Skip to main content

Functionalized Graphene-Metal Nanoparticles Nanohybrids as Electrochemical Sensors

  • Chapter
  • First Online:
Graphene Functionalization Strategies

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

Graphene (GR) and its derivatives are highly interesting carbon nanoforms which possess layered morphology and unique structural/chemical/physical features. These extraordinary properties make GR materials highly applicable for multiple scientific applications, however, zero band gap, hydrophobic nature are among few limitations which make its functionalization a mandatory step to expand its practical applications. To achieve the best out of GR materials, different covalent and noncovalent functionalization schemes have been proposed governed by disruption of sp2 lattice in case of covalent scheme and retention of its structural integrity in case of noncovalent functionalization. The chapter addresses a brief discussion on different GR functionalization schemes. Moreover, it focuses on noncovalently functionalized GR nanohybrids with metal based nanoparticles (MNPs) as electrochemical sensors taking some relevant examples. Synergistic effects of GR materials and MNPs enhance the electro-activity of nanohybrids for electrochemical detection of different targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawal, A.T.: Synthesis and utilisation of graphene for fabrication of electrochemical sensors. Talanta 131, 424–443 (2015)

    Article  CAS  Google Scholar 

  2. Park, C.S., Yoon, H., Kwon, O.S.: Graphene-based nanoelectronic biosensors. J. Ind. Eng. Chem. 38, 13–22 (2016)

    Article  CAS  Google Scholar 

  3. Song, H., Zhang, X., Liu, Y., Su, Z.: Developing graphene based nanohybrids for electrochemical sensing. Chem. Rec. 19, 534–549 (2019)

    Article  CAS  Google Scholar 

  4. Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C., Hobza, P., Zboril, R., Kim, K.S.: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156–6214 (2012)

    Article  CAS  Google Scholar 

  5. Georgakilas, V., Tiwari, J.N., Kemp, K.C., Perman, J.A., Bourlinos, A.B., Kim, K.S., Zboril, R.: Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 116, 5464–5519 (2016)

    Article  CAS  Google Scholar 

  6. Lomeda, J.R., Doyle, C.D., Kosynkin, D.V., Hwang, W.F., Tour, J.M.: Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 130, 16201–16206 (2008)

    Article  CAS  Google Scholar 

  7. Strom, T.A., Dillon, E.P., Hamilton, C.E., Barron, A.R.: Nitrene addition to exfoliated graphene: a one-step route to highly functionalized graphene. Chem. Commun. 46, 4097–4099 (2010)

    Article  CAS  Google Scholar 

  8. Georgakilas, V., Bourlinos, A.B., Zboril, R., Steriotis, T.A., Dallas, P., Stubos, A.K., Trapalis, C.: Organic functionalisation of graphenes. Chem. Commun. 46, 1766–1768 (2010)

    Article  CAS  Google Scholar 

  9. Zhong, X., Jin, J., Li, S., Niu, Z., Hu, W., Li, R., Ma, J.: Aryne cycloaddition: highly efficient chemical modification of graphene. Chem. Commun. 46, 7340–7342 (2010)

    Article  CAS  Google Scholar 

  10. Liu, W.-W., Chai, S.P., Mohamed, A.R., Hashim, U.: Synthesis and characterization of graphene and carbon nanotubes: a review on the past and recent developments. J. Ind. Eng. Chem. 20, 1171–1185 (2014)

    Article  CAS  Google Scholar 

  11. Konkena, B., Vasudevan, S.: Covalently linked, water-dispersible, cyclodextrin: reduced-graphene oxide sheets. Langmuir 28, 12432–12437 (2012)

    Article  CAS  Google Scholar 

  12. Zhao, X., Zhang, P., Chen, Y., Su, Z., Wei, G.: Recent advances in the fabrication and structure specific applications of graphene based inorganic hybrid membranes. Nanoscale 7, 5080–5093 (2015)

    Article  CAS  Google Scholar 

  13. Zhu, P., Nair, A.S., Peng, S., Yang, S., Ramakrishna, S.: Facile fabrication of TiO2–graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning. ACS Appl. Mater. Interfaces 4, 581–585 (2012)

    Article  CAS  Google Scholar 

  14. Xu, C., Wang, X., Zhu, J.: Graphene–metal particle nanocomposites. J. Phys. Chem. C 112, 19841–19845 (2008)

    Article  CAS  Google Scholar 

  15. Yin, Z., Wu, S., Zhou, X., Huang, X., Zhang, Q., Boey, F., Zhang, H.: Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 6, 307–312 (2010)

    Article  CAS  Google Scholar 

  16. Zhu, C., Zhai, J., Wen, D., Dong, S.: Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. J. Mater. Chem. 22, 6300–6306 (2012)

    Article  CAS  Google Scholar 

  17. Hu, L., Tu, J., Jiao, S., Hou, J., Zhu, H., Fray, D.J.: In situ electrochemical polymerization of a nanorod-PANI–Graphene composite in a reverse micelle electrolyte and its application in a supercapacitor. Phys. Chem. Chem. Phys. 14, 15652–15656 (2012)

    Article  CAS  Google Scholar 

  18. Huang, Y., Huang, X., Lian, J., Xu, D., Wang, L., Zhang, X.: Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage. J. Mater. Chem. 22, 2844–2847 (2012)

    Article  CAS  Google Scholar 

  19. Wang, X., Hu, Y., Song, L., Yang, H., Xing, W., Lu, H.: In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J. Mater. Chem. 21, 4222–4227 (2011)

    Article  CAS  Google Scholar 

  20. Kholmanov, I.N., Stoller, M.D., Edgeworth, J., Lee, W.H., Li, H., Lee, J., Barnhart, C., Potts, J.R., Piner, R., Akinwande, D., Barrick, J.E., Ruoff, R.S.: Nanostructured hybrid transparent conductive films with antibacterial properties. ACS Nano 6, 5157–5163 (2012)

    Article  CAS  Google Scholar 

  21. Wang, D., Kou, R., Choi, D., Yang, Z., Nie, Z., Li, J., Saraf, L.V., Hu, D., Zhang, J., Graff, G.L., Liu, J., Pope, M.A., Aksay, I.A.: Ternary self-assembly of ordered metal oxide–graphene nanocomposites for electrochemical energy storage. ACS Nano 4, 1587–1595 (2010)

    Article  CAS  Google Scholar 

  22. Zhang, P., Zhang, X., Zhang, S., Lu, X., Li, Q., Su, Z., Wei, G.: One-pot green synthesis, characterizations, and biosensor application of self-assembled reduced graphene oxide–gold nanoparticle hybrid membranes. J. Mater. Chem. B 1, 6525–6531 (2013)

    Article  CAS  Google Scholar 

  23. Zhang, P., Huang, Y., Lu, X., Zhang, S., Li, J., Wei, G., Su, Z.: One-step synthesis of large-scale graphene film doped with gold nanoparticles at liquid-air interface for electrochemistry and raman detection applications. Langmuir 30, 8980–8989 (2014)

    Article  CAS  Google Scholar 

  24. Li, Y., Zhao, X., Zhang, P., Ning, J., Li, J., Su, Z., Wei, G.: A facile fabrication of large-scale reduced graphene oxide–silver nanoparticle hybrid film as a highly active surface-enhanced raman scattering substrate. J. Mater. Chem. C 3, 4126–4133 (2015)

    Article  CAS  Google Scholar 

  25. Li, Y., Zhang, P., Ouyang, Z., Zhang, M., Lin, Z., Li, J., Su, Z., Wei, G.: nanoscale graphene doped with highly dispersed silver nanoparticles: quick synthesis, facile fabrication of 3D membrane modified electrode and super performance for electrochemical sensing. Adv. Funct. Mater. 26, 2122–2134 (2016)

    Article  CAS  Google Scholar 

  26. Ahmad, R., Mahmoudi, T., Ahn, M.S., Yoo, J.Y., Hahn, Y.B.: Fabrication of sensitive non-enzymatic nitrite sensor using silver reduced graphene oxide nanocomposite. J. Colloid. Inter. Sci. 516, 67–75 (2018)

    Article  CAS  Google Scholar 

  27. Haldorai, Y., Kim, J.Y., Vilian, A.T.E., Heo, N.S., Huh, Y.S., Han, Y.-K.: An enzyme-free electrochemical sensor based on reduced graphene oxide/Co3O4 nanospindle composite for sensitive detection of nitrite. Sens. Actuators B: Chem. 227, 92–99 (2016)

    Article  CAS  Google Scholar 

  28. Zhang, S., Sheng, Q., Zheng, J.: Synthesis of Au nanoparticles dispersed on halloysite nanotubes-reduced graphene oxide nanosheets and their application for electrochemical sensing of nitrites. New J. Chem. 40, 9672–9678 (2016)

    Article  CAS  Google Scholar 

  29. Li, S.S., Hu, Y.Y., Wang, A.J., Weng, X., Chen, J.R., Feng, J.J.: Simple synthesis of worm-like Au-Pd nanostructures supported on reduced graphene oxide for highly sensitive detection of nitrite. Sens. Actuators B: Chem. 208, 468–474 (2015)

    Article  CAS  Google Scholar 

  30. Saraf, M., Rajak, R., Mobin, S.M.: A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors. J. Mater. Chem. A 4, 16432–16445 (2016)

    Article  CAS  Google Scholar 

  31. Zhang, Y., Zhao, Y., Yuan, S., Wang, H., He, C.: Electrocatalysis and detection of nitrite on a reduced graphene/Pd nanocomposite modified glassy carbon electrode. Sens. Actuators B: Chem. 185, 602–607 (2013)

    Article  CAS  Google Scholar 

  32. Fu, L., Yu, S., Thompson, L., Yu, A.: Development of a novel nitrite electrochemical sensor by stepwise in situ formation of palladium and reduced graphene oxide nanocomposites. RSC Adv. 5, 40111–40116 (2015)

    Article  CAS  Google Scholar 

  33. Zhang, D., Fang, Y., Miao, Z., Ma, M., Du, X., Takahashi, S., Anzai, J.-I., Chen, Q.: Direct electrodeposion of reduced graphene oxide and dendritic copper nanoclusters on glassy carbon electrode for electrochemical detection of nitrite. Electrochim. Acta 107, 656–663 (2013)

    Article  CAS  Google Scholar 

  34. Bharath, G., Madhu, R., Chen, S.M., Veeramani, V., Mangalaraj, D., Ponpandian, N.: Solvent-free mechanochemical synthesis of graphene oxide and Fe3O4 reduced graphene oxide nanocomposites for sensitive detection of nitrite. J. Mater. Chem. A 3, 15529–15539 (2015)

    Article  CAS  Google Scholar 

  35. Radhakrishnan, S., Krishnamoorthy, K., Sekar, C., Wilson, J., Kim, S.J.: A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Appl. Catalysis B: Environ. 148–149, 22–28 (2014)

    Article  CAS  Google Scholar 

  36. Marlinda, A.R., Pandikumar, A., Yusoff, N., Huang, N.M., Lim, H.N.: Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide. Microchim. Acta 182, 1113–1122 (2015)

    Article  CAS  Google Scholar 

  37. Wei, G., Zhang, Y., Steckbeck, S., Su, Z., Li, Z.: Biomimetic graphene–FePt nanohybrids with high solubility, ferromagnetism, fluorescence, and enhanced electrocatalytic activity. J. Mater. Chem. 22, 17190–17195 (2012)

    Article  CAS  Google Scholar 

  38. Ding, J., Zhu, S., Zhu, T., Sun, W., Li, Q., Wei, G., Su, Z.: Hydrothermal synthesis of zinc oxide-reduced graphene oxide nanocomposites for an electrochemical hydrazine sensor. RSC Adv. 5, 22935–22942 (2015)

    Article  CAS  Google Scholar 

  39. Umar, A., Rahman, M.M., Kim, S.H., Hahn, Y.B.: Zinc oxide nanonail based chemical sensor for hydrazine detection. Chem. Commun. 2, 166–168 (2008). https://doi.org/10.1039/b711215g

    Article  CAS  Google Scholar 

  40. Zhang, X., Ma, W., Nan, H., Wang, G.: Ultrathin zinc oxide nanofilm on zinc substrate for high performance electrochemical sensors. Electrochim. Acta 144, 186–193 (2014)

    Article  CAS  Google Scholar 

  41. Zhao, Z., Sun, Y., Li, P., Sang, S., Zhang, W., Hu, J., Lian, K.: A sensitive hydrazine electrochemical sensor based on zinc oxide nano-wires. J. Electrochem. Soc. 161, B157–B162 (2014)

    Article  CAS  Google Scholar 

  42. Fang, B., Zhang, C., Zhang, W., Wang, G.: A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode. Electrochim. Acta 55, 178–182 (2009)

    Article  CAS  Google Scholar 

  43. Kavitha, T., Gopalan, A.I., Lee, K.P., Park, S.Y.: Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids. Carbon 50, 2994–3000 (2012)

    Article  CAS  Google Scholar 

  44. Ding, J., Sun, W., Wei, G., Su, Z.: Cuprous oxide microspheres on graphene nanosheets: an enhanced material for nonenzymatic electrochemical detection of H2O2 and glucose. RSC Adv. 5, 35338–35345 (2015)

    Article  CAS  Google Scholar 

  45. Xu, F., Deng, M., Li, G., Chen, S., Wang, L.: Electrochemical behavior of cuprous oxide–reduced graphene oxide nanocomposites and their application in nonenzymatic hydrogen peroxide sensing. Electrochim. Acta 88, 59–65 (2013)

    Article  CAS  Google Scholar 

  46. Liu, M., Liu, R., Chen, W.: Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens. Bioelectron. 45, 206–212 (2013)

    Article  CAS  Google Scholar 

  47. Jiang, B.B., Wei, X.W., Wu, F.H., Wu, K.L., Chen, L., Yuan, G.Z., Dong, C., Ye, Y.: A non-enzymatic hydrogen peroxide sensor based on a glassy carbon electrode modified with cuprous oxide and nitrogen-doped graphene in a nafion matrix. Microchim. Acta 181, 1463–1470 (2014)

    Article  CAS  Google Scholar 

  48. Zhang, L., Li, H., Ni, Y., Li, J., Liao, K., Zhao, G.: Porous cuprous oxide microcubes for non-enzymatic amperometric hydrogen peroxide and glucose sensing. Electrochem. Commun. 11, 812–815 (2009)

    Article  CAS  Google Scholar 

  49. Sunder, G.S.S., Rohanifar, A., Devasurendra, A.M., Kirchhoff, J.R.: Selective determination of l-DOPA at a graphene oxide/yttrium oxide modified glassy carbon electrode. Electrochim. Acta 301, 192–199 (2019)

    Article  CAS  Google Scholar 

  50. Grace, A.A., Divya, K.P., Dharuman, V., Hahn, J.H.: Single step sol-gel synthesized Mn2O3-TiO2 decorated graphene for the rapid and selective ultra sensitive electrochemical sensing of dopamine. Electrochim. Acta 302, 291–300 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhanjai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinha, A., Dhanjai, Chen, J., Jain, R. (2019). Functionalized Graphene-Metal Nanoparticles Nanohybrids as Electrochemical Sensors. In: Khan, A., Jawaid, M., Neppolian, B., Asiri, A. (eds) Graphene Functionalization Strategies. Carbon Nanostructures. Springer, Singapore. https://doi.org/10.1007/978-981-32-9057-0_2

Download citation

Publish with us

Policies and ethics