Skip to main content

The Biology of Aging and Cancer: A Complex Association

  • Chapter
  • First Online:
Models, Molecules and Mechanisms in Biogerontology

Abstract

Aging is accompanied by several age-related disorders leading to death of living beings. These age-related disorders and pathological conditions may also include the development of cancer. Cancer is a chronic disease, and many changes at cellular, molecular, and physiological levels that occur during aging affect the biology of cancer. There are several phenomena which are common between cancer and aging such as telomere shortening, genomic instability, senescence, global hypomethylation, promoter-specific hypermethylation, metabolism, and autophagy. Hence, the association between biology of cancer and aging is incontrovertible; however, the underlying molecular mechanisms could be similar or different. Understanding the common cellular and molecular biology of stem and progenitors cells in cancer and aging will undoubtedly help in exploring novel targets that could be used as a therapy and thus can improve the early detection and treatment of aging-associated pathologies such as cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lees H, Walters H, Cox LS. Animal and human models to understand ageing. Maturitas. 2016;93:18–27.

    Article  PubMed  Google Scholar 

  2. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217.

    Google Scholar 

  3. Jin K. Modern biological theories of aging. Aging Dis. 2010;1:72–4.

    PubMed  PubMed Central  Google Scholar 

  4. Weinert BT, Timiras PS. Invited review: theories of aging. J Appl Physiol. 2003;95:1706.

    Article  CAS  PubMed  Google Scholar 

  5. Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013;75:685–705.

    Article  CAS  PubMed  Google Scholar 

  6. Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell. 2007;130:223–33.

    Article  CAS  PubMed  Google Scholar 

  7. Rufini A, Tucci P, Celardo I, Melino G. Senescence and aging: the critical roles of p53. Oncogene. 2013;32:5129–43.

    Article  CAS  PubMed  Google Scholar 

  8. Rodier F, Campisi J. Four faces of cellular senescence. J Cell Biol. 2011;192:547–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mitchell SJ, Scheibye-Knudsen M, Longo DL, de Cabo R. Animal models of aging research: implications for human aging and age-related diseases. Annu Rev Anim Biosci. 2015;3:283–303.

    Article  CAS  PubMed  Google Scholar 

  10. Cruickshanks HA, Adams PD. Chromatin: a molecular interface between cancer and aging. Curr Opin Genet Dev. 2011;21:100–6.

    Article  CAS  PubMed  Google Scholar 

  11. Yancik R, Ries LA. Cancer in older persons: an international issue in an aging world. Semin Oncol. 2004;31:128–36.

    Article  PubMed  Google Scholar 

  12. Frank SA. Dynamics of cancer: incidence, inheritance, and evolution. Princeton NJ: Steven A Frank; 2007.

    Book  Google Scholar 

  13. Anisimov VN. Carcinogenesis and aging 20 years after: escaping horizon. Mech Ageing Dev. 2009;130:105–21.

    Article  CAS  PubMed  Google Scholar 

  14. Veronesi U, Marubini E, Mariani L, Galimberti V, Luini A, Veronesi P, et al. Radiotherapy after breast-conserving surgery in small breast carcinoma: long-term results of a randomized trial. Ann Oncol Off J Eur Soc Med Oncol. 2001;12:997–1003.

    Article  CAS  Google Scholar 

  15. Ershler WB, Stewart JA, Hacker MP, Moore AL, Tindle BH. B16 murine melanoma and aging: slower growth and longer survival in old mice. J Natl Cancer Inst. 1984;72:161–4.

    Article  CAS  PubMed  Google Scholar 

  16. Balducci L, Ershler WB. Cancer and ageing: a nexus at several levels. Nat Rev Cancer. 2005;5:655–62.

    Article  CAS  PubMed  Google Scholar 

  17. Finkel T, Serrano M, Blasco MA. The common biology of cancer and ageing. Nature. 2007;448:767–74.

    Article  CAS  PubMed  Google Scholar 

  18. de Magalhaes JP. How ageing processes influence cancer. Nat Rev Cancer. 2013;13:357–65.

    Article  PubMed  CAS  Google Scholar 

  19. Serrano M, Blasco MA. Cancer and ageing: convergent and divergent mechanisms. Nat Rev Mol Cell Biol. 2007;8:715–22.

    Article  CAS  PubMed  Google Scholar 

  20. Campisi J, Yaswen P. Aging and cancer cell biology, 2009. Aging Cell. 2009;8:221–5.

    Article  CAS  PubMed  Google Scholar 

  21. Kudryavtseva AV, Krasnov GS, Dmitriev AA, Alekseev BY, Kardymon OL, Sadritdinova AF, et al. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget. 2016;7:44879–905.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Das PM, Singal R. DNA methylation and cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2004;22:4632–42.

    Article  CAS  Google Scholar 

  23. Fraga MF, Agrelo R, Esteller M. Cross-talk between aging and cancer: the epigenetic language. Ann N Y Acad Sci. 2007;1100:60–74.

    Article  CAS  PubMed  Google Scholar 

  24. Campisi J. Cancer and ageing: rival demons? Nat Rev Cancer. 2003;3:339–49.

    Article  CAS  PubMed  Google Scholar 

  25. Anisimov VN. The relationship between aging and carcinogenesis: a critical appraisal. Crit Rev Oncol Hematol. 2003;45:277–304.

    Article  PubMed  Google Scholar 

  26. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vogel H, Lim DS, Karsenty G, Finegold M, Hasty P. Deletion of Ku86 causes early onset of senescence in mice. Proc Natl Acad Sci U S A. 1999;96:10770–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Augert A, Bernard D. Immunosenescence and senescence immunosurveillance: one of the possible links explaining the cancer incidence in ageing population. In: Wang Z, Inuzuka H, editors. Senescence and senescence-related disorders. Rijeka: InTech; 2013.. p Ch. 04.

    Google Scholar 

  29. Kong Y, Cui H, Ramkumar C, Zhang H. Regulation of senescence in cancer and aging. J Aging Res. 2011;2011:963172.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Falandry C, Bonnefoy M, Freyer G, Gilson E. Biology of cancer and aging: a complex association with cellular senescence. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32:2604–10.

    Article  Google Scholar 

  31. Anisimov VN. Biology of aging and cancer. Cancer control: J Moffitt Cancer Cent. 2007;14:23–31.

    Article  Google Scholar 

  32. Ershler WB, Longo DL. Aging and cancer: issues of basic and clinical science. J Natl Cancer Inst. 1997;89:1489–97.

    Article  CAS  PubMed  Google Scholar 

  33. Johnson AA, Akman K, Calimport SR, Wuttke D, Stolzing A, de Magalhaes JP. The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res. 2012;15:483–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin Q, Wagner W. Epigenetic aging signatures are coherently modified in cancer. PLoS Genet. 2015;11:e1005334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Rakyan VK, Down TA, Maslau S, Andrew T, Yang T-P, Beyan H, et al. Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res. 2010;20:434–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Anisimov VN. Biology of aging and Cancer. Cancer Control. 2017;14(1):23–31.

    Google Scholar 

  37. Xie B, Chen J, Liu B, Zhan J. Klotho acts as a tumor suppressor in cancers. Pathol Oncol Res: POR. 2013;19:611–7.

    Article  CAS  PubMed  Google Scholar 

  38. Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging. Cell. 2011;146:682–95.

    Article  CAS  PubMed  Google Scholar 

  39. Gerl R, Vaux DL. Apoptosis in the development and treatment of cancer. Carcinogenesis. 2005;26:263–70.

    Article  CAS  PubMed  Google Scholar 

  40. Blagosklonny MV. Selective anti-cancer agents as anti-aging drugs. Cancer Biol Ther. 2013;14:1092–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Malaguarnera L, Ferlito L, Di Mauro S, Imbesi RM, Scalia G, Malaguarnera M. Immunosenescence and cancer: a review. Arch Gerontol Geriatr. 2001;32:77–93.

    Article  CAS  PubMed  Google Scholar 

  42. Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Invest. 2007;117:1137–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carlson ME, Silva HS, Conboy IM. Aging of signal transduction pathways, and pathology. Exp Cell Res. 2008;314:1951–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kaur A, Webster MR, Weeraratna AT. In the Wnt-er of life: Wnt signalling in melanoma and ageing. Br J Cancer. 2016;115:1273–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Steelman LS, Chappell WH, Abrams SL, Kempf RC, Long J, Laidler P, et al. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY). 2011;3:192–222.

    Article  CAS  Google Scholar 

  46. Wang X. Microarray analysis of ageing-related signatures and their expression in tumors based on a computational biology approach. Genomics Proteomics Bioinformatics. 2012;10:136–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Wang X. Discovery of molecular associations among aging, stem cells, and cancer based on gene expression profiling. Chin J Cancer. 2013;32:155–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ahmad A, Banerjee S, Wang Z, Kong D, Majumdar AP, Sarkar FH. Aging and inflammation: etiological culprits of cancer. Current Aging Sci. 2009;2:174–86.

    Article  CAS  Google Scholar 

  49. Cui H, Kong Y, Zhang H. Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduction. 2012;2012:646354.

    Article  CAS  Google Scholar 

  50. Afanas’ev I. Reactive oxygen species signaling in cancer: comparison with aging. Aging Dis. 2011;2:219–30.

    PubMed  Google Scholar 

  51. Fulop T, Larbi A, Kotb R, de Angelis F, Pawelec G. Aging, immunity, and cancer. Discov Med. 2011;11:537–50.

    PubMed  Google Scholar 

  52. Rodier F, Campisi J, Bhaumik D. Two faces of p53: aging and tumor suppression. Nucleic Acids Res. 2007;35:7475–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hasty P, Christy BA. p53 as an intervention target for cancer and aging. Pathobiol Aging Age Relat Dis. 2013;3:1–11.

    Google Scholar 

  54. Lanning NJ, Carter-Su C. Recent advances in growth hormone signaling. Rev Endocr Metab Disord. 2006;7:225–35.

    Article  CAS  PubMed  Google Scholar 

  55. Bartke A. Growth hormone and aging: a challenging controversy. Clin Interv Aging. 2008;3:659–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 2003;421:182–7.

    Article  CAS  PubMed  Google Scholar 

  57. Anisimov VN, Bartke A. The key role of growth hormone-insulin-IGF-1 signaling in aging and cancer. Crit Rev Oncol Hematol. 2013;87:201–23.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Efeyan A, Comb WC, Sabatini DM. Nutrient-sensing mechanisms and pathways. Nature. 2015;517:302–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Santos J, Leitao-Correia F, Sousa MJ, Leao C. Dietary restriction and nutrient balance in aging. Oxidative Med Cell Longev. 2016;2016:4010357.

    Google Scholar 

  60. Gallinetti J, Harputlugil E, Mitchell JR. Amino acid sensing in dietary-restriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem J. 2013;449:1–10.

    Article  CAS  PubMed  Google Scholar 

  61. Menon S, Manning BD. Cell signalling: nutrient sensing lost in cancer. Nature. 2013;498:444–5.

    Article  CAS  PubMed  Google Scholar 

  62. Rossi DJ, Jamieson CH, Weissman IL. Stems cells and the pathways to aging and cancer. Cell. 2008;132:681–96.

    Article  CAS  PubMed  Google Scholar 

  63. Singh SR. Stem cell niche in tissue homeostasis, aging and cancer. Curr Med Chem. 2012;19:5965–74.

    Article  CAS  PubMed  Google Scholar 

  64. Adams PD, Jasper H, Rudolph KL. Aging-induced stem cell mutations as drivers for disease and cancer. Cell Stem Cell. 2015;16:601–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hiyama E, Hiyama K. Telomere and telomerase in stem cells. Br J Cancer. 2007;96:1020–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rana P. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajput, M., Dwivedi, L., Sabarwal, A., Singh, R.P. (2020). The Biology of Aging and Cancer: A Complex Association. In: Rath, P. (eds) Models, Molecules and Mechanisms in Biogerontology. Springer, Singapore. https://doi.org/10.1007/978-981-32-9005-1_21

Download citation

Publish with us

Policies and ethics