Skip to main content

Biological Rhythms and Aging

  • Chapter
  • First Online:
Models, Molecules and Mechanisms in Biogerontology

Abstract

Biological rhythm is one or more biological events or functions that reoccur in time in a repeated order and with a repeated interval between occurrences and allow an organism to harmonize successfully with its environment. Aging leads to a functional deterioration of many physiological systems, including the biological clock – an internal time-keeping system – that generates ∼24-h rhythms in physiology and behavior. Latest data from experiments in model organisms, gene expression studies, and clinical trials imply that dysfunctions of the circadian clock contribute to aging and age-associated pathologies, thereby suggesting a functional link between the circadian clock and age-associated decline of brain functions and various biochemical and physiological processes. With the advancement in understanding the molecular aspects of aging and circadian system, several therapeutic strategies such as antioxidants, feeding regimen, and most advanced small molecule modulators have been extensively studied. In this chapter, we discuss the functional aspects of biological clock, its association with aging and give an insight into the existing therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron. 2012;74:246–60.

    CAS  PubMed  Google Scholar 

  2. Alessi C, Martin JL, Fiorentino L, Fung CH, Dzierzewski JM, Rodriguez Tapia JC, Song Y, Josephson K, Jouldjian S, Mitchell MN. Cognitive behavioral therapy for insomnia in older veterans using nonclinician sleep coaches: randomized controlled trial. J Am Geriatr Soc. 2016;64:1830–8.

    PubMed  PubMed Central  Google Scholar 

  3. Ali AA, Schwarz-Herzke B, Stahr A, Prozorovski T, Aktas O, von Gall C. Premature aging of the hippocampal neurogenic niche in adult Bmal1-deficient mice. Aging (Albany NY). 2015;7:435–49.

    CAS  Google Scholar 

  4. Alzoubi KH, Mayyas FA, Khabour OF, BaniSalama FM, Alhashimi FH, Mhaidat NM. Chronic melatonin treatment prevents memory impairment induced by chronic sleep deprivation. Mol Neurobiol. 2016;53:3439–47.

    CAS  PubMed  Google Scholar 

  5. Antoch MP, Gorbacheva VY, Vykhovanets O, Toshkov IA, Kondratov RV, Kondratova AA, Lee C, Nikitin AY. Disruption of the circadian clock due to the clock mutation has discrete effects on aging and carcinogenesis. Cell Cycle. 2008;7:1197–204.

    CAS  PubMed  Google Scholar 

  6. Asher G, Sassone-corsi P. Review time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell. 2015;161:84–92.

    CAS  PubMed  Google Scholar 

  7. Azzi A, Dallmann R, Casserly A, Rehrauer H, Patrignani A, Maier B, Kramer A, Brown SA. Circadian behavior is light-reprogrammed by plastic DNA methylation. Nat Nurosci. 2014;17:377–82.

    CAS  Google Scholar 

  8. Baird AL, Coogan AN, Siddiqui A, Donev RM, Thome J. Adult attention-deficit hyperactivity disorder is associated with alterations in circadian rhythms at the behavioural, endocrine and molecular levels. Mol Psychiatry. 2012;17:988–95.

    CAS  PubMed  Google Scholar 

  9. Banks G, Heise I, Starbuck B, Osborne T, Wisby L, Potter P, Jackson IJ, Foster RG, Peirson SN, Nolan PM. Genetic background influences age-related decline in visual and nonvisual retinal responses, circadian rhythms, and sleep. Neurobiol Aging. 2015;36:380–93.

    PubMed  PubMed Central  Google Scholar 

  10. Banks G, Nolan PM, Peirson SN. Reciprocal interactions between circadian clocks and aging. Mamm Genome. 2016;27:332–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Belden WJ, Dunlap JC. Aging well with a little wine and a good clock. Cell. 2013;153:1421–2.

    CAS  PubMed  Google Scholar 

  12. Bonaconsa M, Malpeli G, Montaruli A, Carandente F, Grassi-Zucconi G, Bentivoglio M. Differential modulation of clock gene expression in the suprachiasmatic nucleus, liver and heart of aged mice. Exp Gerontol. 2014;55:70–9.

    CAS  PubMed  Google Scholar 

  13. Bonomini F, Rodella LF, Rezzani R. Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis. 2015;6:109–20.

    PubMed  PubMed Central  Google Scholar 

  14. Brandhorst S, Choi IY, Wei M, Cheng CW, Sedrakyan S, Navarrete G, Dubeau L, Yap LP, Park R, Vinciguerra M, Di Biase S, Mirzaei H, Mirisola MG, Childress P, Ji L, Groshen S, Penna F, Odetti P, Perin L, Conti PS, Ikeno Y, Kennedy BK, Cohen P, Morgan TE, Dorff TB, Longo VD. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab. 2015;22:86–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bunger MK, Walisser JA, Sullivan R, Manley PA, Moran SM, Kalscheur VL, Colman RJ, Bradfield CA. Progressive arthropathy in mice with a targeted disruption of the Mop3/Bmal-1 locus. Genesis. 2005;41:122–32.

    CAS  PubMed  Google Scholar 

  16. Cagnin A, Fragiacomo F, Camporese G, Turco M, Bussè C, Ermani M, Montagnese S. Sleep-wake profile in dementia with Lewy bodies, Alzheimer’s disease, and normal aging. J Alzheimers Dis. 2017;55:1529–36.

    CAS  PubMed  Google Scholar 

  17. Calabrese V, Cornelius C, Mancuso C, Pennisi G, Calafato S, Bellia F, Bates TE, Giuffrida Stella AM, Schapira T, Dinkova Kostova AT, Rizzarelli E. Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem Res. 2008;33:2444–71.

    CAS  PubMed  Google Scholar 

  18. Cardinali DP, Brusco LI, Liberczuk C, Furio AM. The use of melatonin in Alzheimer’s disease. Neuro Endocrinol Lett. 2002;1:20–3.

    Google Scholar 

  19. Carocci A, Sinicropi MS, Catalano A, Lauria G, Genchi G. Melatonin in Parkinson’s disease. In: Abdul QR, editor. A synopsis of Parkinson’s disease. Intech; 2014. pp 71–99.

    Google Scholar 

  20. Chang HC, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell. 2013;153:1448–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen Z, Yoo SH, Park YS, Kim KH, Wei S, Buhr E, Ye ZY, Pan HL, Takahashi JS. Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening. Proc Natl Acad Sci U S A. 2012;109:101–6.

    CAS  PubMed  Google Scholar 

  22. Chen Z, Yoo S, Takahashi JS. Development and therapeutic potential of small-molecule modulators of circadian systems. Annu Rev Pharmacol Toxicol. 2018;58:231–52.

    CAS  PubMed  Google Scholar 

  23. Chun SK, Jang J, Chung S, Yun H, Kim NJ, Jung JW, Son GH, Suh YG, Kim K. Identification and validation of Cryptochrome inhibitors that modulate the molecular circadian clock. ACS Chem Biol. 2014;9:703–10.

    CAS  PubMed  Google Scholar 

  24. Cooke JR, Ancoli-Israel S. Normal and abnormal sleep in the elderly. Handb Clin Neurol. 2011;98:653–65.

    PubMed  PubMed Central  Google Scholar 

  25. Couto-Moraes R, Palermo-Neto J, Markus RP. The immune–pineal axis: stress as a modulator of pineal gland function. Ann N Y Acad Sci. 2009;1153:193–202.

    PubMed  Google Scholar 

  26. Curtis J, Burkley E, Burkley M. The rhythm is gonna get you: the influence of circadian rhythm synchrony on self-control outcomes. Soc Personal Psychol Compass. 2014;8:609–25.

    Google Scholar 

  27. De Cata A, D’Agruma L, Tarquini R, Mazzoccoli G. Rheumatoid arthritis and the biological clock. Expert Rev Clin Immunol. 2014;10:687–95.

    PubMed  Google Scholar 

  28. Declerck K, Berghe WV. Back to the future: epigenetic clock plasticity towards healthy aging. Mech Ageing Dev. 2018;174:18–29. https://doi.org/10.1016/j.mad.2018.01.002.

    Article  PubMed  Google Scholar 

  29. Dibner C, Schibler U. Body clocks: time for the nobel prize. Acta Physiol (Oxford). 2018;222(2):e13024. https://doi.org/10.1111/apha.13024.

    Article  CAS  Google Scholar 

  30. Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–49.

    CAS  PubMed  Google Scholar 

  31. Dubrovsky YV, Samsa WE, Kondratov RV. Deficiency of circadian protein CLOCK reduces lifespan and increases age-related cataract development in mice. Aging (Albany NY). 2010;2:936–44.

    CAS  Google Scholar 

  32. Duncan MJ, Prochot JR, Cook DH, Tyler Smith J, Franklin KM. Influence of aging on Bmal1 and Per2 expression in extra-SCN oscillators in hamster brain. Brain Res. 2013;1491:44–53.

    CAS  PubMed  Google Scholar 

  33. Dunlap JC. Molecular bases for circadian clocks. Cell. 1999;96:271–90.

    CAS  PubMed  Google Scholar 

  34. Duong HA, Robles MS, Knutti D, Weitz CJ. A molecular mechanism for circadian clock negative feedback. Science. 2011;332:1436–9.

    CAS  PubMed  Google Scholar 

  35. Espiritu J. Aging-related sleep changes. Clin Geriatr Med. 2008;24:1–14.

    PubMed  Google Scholar 

  36. Farajnia S, Meijer JH, Michel S. Age-related changes in large-conductance calcium-activated potassium channels in mammalian circadian clock neurons. Neurobiol Aging. 2015;36:2176–83.

    CAS  PubMed  Google Scholar 

  37. Ferrari E, Cravello L, Falvo F, Barili L, Solerte SB, Fioravanti M, Magri F. Neuroendocrine features in extreme longevity. Exp Gerontol. 2008;43:88–94.

    CAS  PubMed  Google Scholar 

  38. Freitas AA, de Magalhães JP. A review and appraisal of the DNA damage theory of ageing. Mutat Res. 2011;728:12–22.

    CAS  PubMed  Google Scholar 

  39. Gleason K, McCall WV. Current concepts in the diagnosis and treatment of sleep disorders in the elderly. Curr Psychiatry Rep. 2015;17:45.

    PubMed  Google Scholar 

  40. Gloston G, Yoo S, Chen Z. Clock-enhancing small molecules and potential applications in chronic diseases and aging. Front Neurol. 2017;8:100.

    PubMed  PubMed Central  Google Scholar 

  41. Gocmez S, Gacar N, Utkan T, Gacar G, Scarpace PJ, Tumer N. Protective effects of resveratrol on aging-induced cognitive impairment in rats. Neurobiol Learn Mem. 2016;131:131–6.

    CAS  PubMed  Google Scholar 

  42. Golombek DA, Ralph MR. KN-62, an inhibitor of Ca2+/calmodulin kinase II, attenuates circadian responses to light. Neuroreport. 1994;5:1638–40.

    CAS  PubMed  Google Scholar 

  43. Grabowska W, Sikora E, Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology. 2017;18:447–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gruszka A, Hampshire A, Barker RA, Owen AM. Normal aging and Parkinson’s disease are associated with the functional decline of distinct frontal-striatal circuits. Cortex. 2017;93:178–92.

    PubMed  PubMed Central  Google Scholar 

  45. Gustafson CL, Partch CL. Emerging models for the molecular basis of mammalian circadian timing. Biochemistry. 2015;54:134–49.

    CAS  PubMed  Google Scholar 

  46. Hardeland R. Deacceleration of brain aging by melatonin. In: Stephen CB, Campbell A, editors. Oxidative stress in applied basic research and clinical practice. New York: Springer; 2016. p. 345–76.

    Google Scholar 

  47. Hayasaka N, Hirano A, Miyoshi Y, Tokuda IT, Yoshitane H, Matsuda J, Fukada Y. Salt-inducible kinase 3 regulates the mammalian circadian clock by destabilizing PER2 protein. elife. 2017;6:e24779. https://doi.org/10.7554/eLife.24779.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Helleboid S, Haug C, Lamottke K, Zhou Y, Wei J, Daix S, Cambula L, Rigou G, Hum DW, Walczak R. The identification of naturally occurring neoruscogenin as a bioavailable, potent, and high-affinity agonist of the nuclear receptorRORα (NR1F1). J Biomol Screen. 2014;19:399–406.

    CAS  PubMed  Google Scholar 

  49. Hida A, Kusanagi H, Satoh K, Kato T, Matsumoto Y, Echizenya M, Shimizu T, Higuchi S, Mishima K. Expression profiles of PERIOD1, 2, and 3 in peripheral blood mononuclear cells from older subjects. Life Sci. 2009;84:33–7.

    CAS  PubMed  Google Scholar 

  50. Hofman MA, Swaab DF. Living by the clock: the circadian pacemaker in older people. Ageing Res Rev. 2006;5:33–51.

    CAS  PubMed  Google Scholar 

  51. Hood S, Amir S. The aging clock: circadian rhythms and later life. J Clin Invest. 2017;127:437–46.

    PubMed  PubMed Central  Google Scholar 

  52. Hu Y, Spengler ML, Kuropatwinski KK, Comas-Soberats M, Jackson M, Chernov MV, Gleiberman AS, Fedtsova N, Rustum YM, Gudkov AV, Antoch MP. Selenium is a modulator of circadian clock that protects mice from the toxicity of a chemotherapeutic drug via upregulation of the core clock protein, BMAL1. Oncotarget. 2011;2:1279–90.

    PubMed  PubMed Central  Google Scholar 

  53. Jagota A. Aging and sleep disorders. Indian J Gerontol. 2005;19:415–24.

    Google Scholar 

  54. Jagota A. Suprachiasmatic nucleus: the center for circadian timing system in mammals. Proc Indian Natl Sci Acad. 2006;B71:275–88.

    Google Scholar 

  55. Jagota A. Age- induced alterations in biological clock: therapeutic effects of melatonin. In: Thakur M, Rattan S, editors. Brain aging and therapeutic interventions. Dordrecht: Springer; 2012. p. 111–29.

    Google Scholar 

  56. Jagota A, de la Iglesia HO, Schwartz WJ. Morning and evening circadian oscillations in the suprachiasmatic nucleus in vitro. Nat Neurosci. 2000;3:372–6.

    CAS  PubMed  Google Scholar 

  57. Jagota A, Kalyani D. Effect of melatonin on age induced changes in daily serotonin rhythms in suprachiasmatic nucleus of male Wistar rat. Biogerontology. 2010;11:299–308.

    CAS  PubMed  Google Scholar 

  58. Jagota A, Reddy MY. The effect of curcumin on ethanol induced changes in suprachiasmatic nucleus (SCN) and pineal. Cell Mol Neurobiol. 2007;27:997–1006.

    CAS  PubMed  Google Scholar 

  59. Jagota A, Thummadi NB. Hormones in clock regulation during ageing. In: Rattan SIS, Sharma R, editors. Hormones and ageing and longevity. Healthy ageing and longevity, vol. 6. Cham: Springer; 2017. p. 243–65.

    Google Scholar 

  60. Jagota A, Kowshik K. Chapter 21: therapeutic effects of Ashwagandha in brain aging and clock disfunction (Invited chapter). In: Kaul S, Wadhwa R, editors. Science of Ashwagandha: preventive and therapeutic potentials. Cham: Springer; 2017. p. 437–56.

    Google Scholar 

  61. Jagota A, Mattam U. Daily chronomics of proteomic profile in aging and rotenone-induced Parkinson’s disease model in male Wistar rat and its modulation by melatonin. Biogerontology. 2017;18:615–30.

    CAS  PubMed  Google Scholar 

  62. Kapur VK, Auckley DH, Chowdhuri S, Kuhlmann DC, Mehra R, Ramar K, Harrod CG. Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of Sleep Medicine Clinical Practice Guideline. J Clin Sleep Med. 2017;13:479–504.

    PubMed  PubMed Central  Google Scholar 

  63. Khan MA, Subramaneyaan M, Arora VK, Banerjee BD, Ahmed RS. Effect of Withania somnifera (Ashwagandha) root extract on amelioration of oxidative stress and autoantibodies production in collagen-induced arthritic rats. J Complement Integr Med. 2015;12:117–25.

    PubMed  Google Scholar 

  64. Kim HJ, Harrington ME. Neuropeptide Y-deficient mice show altered circadian response to simulated natural photoperiod. Brain Res. 2008;1246:96–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim MJ, Lee JH, Duffy JF. Circadian rhythm sleep disorders. J Clin Outcomes Manag. 2013;20:513–28.

    PubMed  PubMed Central  Google Scholar 

  66. Klein DC, Moore RY, Reppert SM, editors. Suprachiasmatic nucleus: the mind’s clock. New York: Oxford University Press; 1991.

    Google Scholar 

  67. Kojetin DJ, Burris TP. REV-ERB and ROR nuclear receptors as drug targets. Nat Rev Drug Discov. 2014;13:197–216.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Konar A, Shah N, Singh R, Saxena N, Kaul SC, Wadhwa R, Thakur MK. Protective role of Ashwagandha leaf extract and its component withanone on scopolamine-induced changes in the brain and brain-derived cells. PLoS One. 2011;6:e27265.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Korenčič A, Bordyugov G, Lehmann R, Rozman D, Herzel H. Timing of circadian genes in mammalian tissues. Sci Rep. 2014;4:5782.

    PubMed  PubMed Central  Google Scholar 

  70. Krishnan N, Kretzschmar D, Rakshit K, Chow E, Giebultowicz JM. The circadian clock gene period extends healthspan in aging Drosophila melanogaster. Aging (Albany NY). 2009;1:937–48.

    CAS  Google Scholar 

  71. Kumar R, Gupta K, Saharia K, Pradhan D, Subramaniam JR. Withania somnifera root extract extends lifespan of Caenorhabditis elegans. Ann Neurosci. 2013;20:13–6.

    PubMed  PubMed Central  Google Scholar 

  72. Lavery DJ, Lopez-molina L, Margueron R, Fleury-Olela F, Conquet F, Schibler U, Bonfils C. Circadian expression of the steroid 15 alpha-hydroxylase (Cyp2a4) and coumarin 7-hydroxylase (Cyp2a5) genes in mouse liver is regulated by the PAR leucine zipper transcription factor DBP. Mol Cell Biol. 1999;19:6488–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lavoie CJ, Zeidler MR, Martin JL. Sleep and aging. Sleep Sci Pract. 2018;2:3.

    Google Scholar 

  74. Lee CC. Tumor suppression by the mammalian period genes. Cancer Causes Control. 2006;17:525–30.

    PubMed  Google Scholar 

  75. Lee Y, Kim K. Posttranslational and epigenetic regulation of the CLOCK/BMAL1 complex in the mammalian. Anim Cells Syst. 2012;16:1–10.

    CAS  Google Scholar 

  76. Lim ASP, Myers AJ, Yu L, Buchman AS, Duffy JF, De Jager PL, Bennett DA. Sex difference in daily rhythms of clock gene expression in the aged human cerebral cortex. J Biol Rhythm. 2013;28:117–29.

    CAS  Google Scholar 

  77. Lim ASP, Fleischman DA, Dawe RJ, Yu L, Arfanakis K, Buchman AS, Bennett DA. Regional neocortical gray matter structure and sleep fragmentation in older adults. Sleep. 2016;39:227–35.

    PubMed  PubMed Central  Google Scholar 

  78. Lindemer ER, Greve DN, Fischl BR, Augustinack JC, Salat DH. Regional staging of white matter signal abnormalities in aging and Alzheimer’s disease. Neuroimage Clin. 2017;14:156–65.

    PubMed  PubMed Central  Google Scholar 

  79. Ling ZQ, Tian Q, Wang L, Fu ZQ, Wang XC, Wang Q, Wang JZ. Constant illumination induces Alzheimer–like damages with endoplasmic reticulum involvement and the protection of melatonin. J Alzheimers Dis. 2009;16:287–300.

    CAS  PubMed  Google Scholar 

  80. Lin L, Huang QX, Yang SS, Chu J, Wang JZ, Tian Q. Melatonin in Alzheimer’s disease. Int J Mol Sci. 2013;14:14575–93.

    PubMed  PubMed Central  Google Scholar 

  81. Longo VD, Panda S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 2016;23:1048–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217.

    PubMed  PubMed Central  Google Scholar 

  83. Lupi D, Semo M, Foster RG. Impact of age and retinal degeneration on the light input to circadian brain structures. Neurobiol Aging. 2012;33:383–92.

    PubMed  Google Scholar 

  84. Maestroni GJ, Sulli A, Pizzorni C, Villaggio B, Cutolo M. Melatonin in rheumatoid arthritis: synovial macrophages show melatonin receptors. Ann N Y Acad Sci. 2002;966:271–5.

    CAS  PubMed  Google Scholar 

  85. Manchanda S, Mishra R, Singh R, Kaur T, Kaur G. Aqueous leaf extract of Withania somnifera as a potential neuroprotective agent in sleep-deprived rats: a mechanistic study. Mol Neurobiol. 2017;54:3050–61.

    CAS  PubMed  Google Scholar 

  86. Mander BA, Winer JR, Walker MP. Sleep and human aging. Neuron. 2017;94:19–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Manikonda PK, Jagota A. Melatonin administration differentially affects age-induced alterations in daily rhythms of lipid peroxidation and antioxidant enzymes in male rat liver. Biogerontology. 2012;13:511–24.

    CAS  PubMed  Google Scholar 

  88. Matsubara E, Bryant–Thomas T, Quinto JP, Henry TL, Poeggeler B, Herbert D, Cruz–Sanchez F, Chyan YJ, Smith MA, Perry G, Shoji M, Abe K, Leone A, Grundke–Ikbal I, Wilson GL, Ghiso J, Williams C, Refolo LM, Pappolla MA. Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. J Neurochem. 2003;85:1101–8.

    CAS  PubMed  Google Scholar 

  89. Mattam U, Jagota A. Daily rhythms of serotonin metabolism and the expression of clock genes in suprachiasmatic nucleus of rotenone-induced Parkinson’s disease male Wistar rat model and effect of melatonin administration. Biogerontology. 2015;16:109–23.

    CAS  PubMed  Google Scholar 

  90. Mattam U, Jagota A. Differential role of melatonin in restoration of age-induced alterations in daily rhythms of expression of various clock genes in suprachiasmatic nucleus of male Wistar rats. Biogerontology. 2014;15:257–68.

    CAS  PubMed  Google Scholar 

  91. Mattis J, Sehgal A. Circadian rhythms, sleep, and disorders of aging. Trends Endocrinol Metab. 2016;27:192–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Maurya PK, Noto C, Rizzo LB, Rios AC, Nunes SO, Barbosa DS, Sethi S, Zeni M, Mansur RB, Maes M, Brietzke E. The role of oxidative and nitrosative stress in accelerated aging and major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;65:134–44.

    CAS  Google Scholar 

  93. Maywood ES, Reddy AB, Wong GK, O’Neill JS, O’Brien JA, McMahon DG, Harmar AJ, Okamura H, Hastings MH. Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr Biol. 2006;16:599–605.

    CAS  PubMed  Google Scholar 

  94. Mendoza J, Graff C, Dardente H, Pevet P, Challet E. Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle. J Neurosci. 2005;25:1514–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Meng QJ, Maywood ES, Bechtold DA, Lu WQ, Li J, Gibbs JE, Dupré SM, Chesham JE, Rajamohan F, Knafels J, Sneed B, Zawadzke LE, Ohren JF, Walton KM, Wager TT, Hastings MH, Loudon AS. Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc Natl Acad Sci U S A. 2010;107:15240–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Moga MM, Moore RY. Organization of neural inputs to the suprachiasmatic nucleus in the rat. J Comp Neurol. 1997;389:508–34.

    CAS  PubMed  Google Scholar 

  97. Murri MB, Pariante C, Mondelli V, Masotti M, Atti AR, Mellacqua Z, Antonioli M, Ghio L, Menchetti M, Zanetidou S, Innamorati M, Amore M. HPA axis and aging in depression: systematic review and meta-analysis. Psychoneuroendocrinology. 2014;41:46–62.

    Google Scholar 

  98. Musiek ES, Lim MM, Yang G, Bauer AQ, Qi L, Lee Y, Roh JH, Ortiz-Gonzalez X, Dearborn JT, Culver JP, Herzog ED, Hogenesch JB, Wozniak DF, Dikranian K, Giasson BI, Weaver DR, Holtzman DM, Fitzgerald GA. Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J Clin Invest. 2013;123:5389–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science. 2009;324:654–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Nakamura TJ, Takasu NN, Nakamura W. The suprachiasmatic nucleus: age-related decline in biological rhythms. J Physiol Sci. 2016;66:367–74.

    CAS  PubMed  Google Scholar 

  101. Nangle S, Xing W, Zheng N. Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase. Cell Res. 2013;23:1417–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Oike H, Kobori M. Resveratrol regulates circadian clock genes in rat-1 fibroblast cells. Biosci Biotechnol Biochem. 2008;72:3038–40.

    CAS  PubMed  Google Scholar 

  103. Olcese JM, Cao C, Mori T, Mamcarz MB, Maxwell A, Runfeldt MJ, Wang L, Zhang C, Lin X, Zhang G, Arendash GW. Protection against cognitive deficits and markers of neurodegeneration by long–term oral administration of melatonin in a transgenic model of Alzheimer disease. J Pineal Res. 2009;47:82–96.

    CAS  PubMed  Google Scholar 

  104. Orozco-Solis R, Sassone-Corsi P. Circadian clock: linking epigenetics to aging. Curr Opin Genet Dev. 2014;26:66–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Palesh O, Aldridge-Gerry A, Zeitzer JM, Koopman C, Neri E, Giese-Davis J, Jo B, Kraemer H, Nouriani B, Spiegel D. Actigraphy-measured sleep disruption as a predictor of survival among women with advanced breast cancer. Sleep. 2014;37:837–42.

    PubMed  PubMed Central  Google Scholar 

  106. Palmer J. An introduction to biological rhythms. Saint Louis: Elsevier; 2012.

    Google Scholar 

  107. Palomba M, Nygård M, Florenzano F, Bertini G, Kristensson K, Bentivoglio M. Decline of the presynaptic network, including GABAergic terminals, in the aging suprachiasmatic nucleus of the mouse. J Biol Rhythm. 2008;23:220–31.

    CAS  Google Scholar 

  108. Panchawat S. In vitro free radical scavenging activity of leaves extracts of Withania somnifera. Recent Res Sci Technol. 2011;3:40–3.

    Google Scholar 

  109. Park I, Lee Y, Kim H, Kim K. Original article effect of resveratrol, a SIRT1 activator, on the interactions of the CLOCK/BMAL1 complex. Endocrinol Metab. 2014;29:379–87.

    Google Scholar 

  110. Patel SA, Chaudhari A, Gupta R, Velingkaar N, Kondratov RV. Circadian clocks govern calorie restriction – mediated life span extension through BMAL1- and IGF-1-dependent mechanisms. FASEB J. 2017;30:1634–42.

    Google Scholar 

  111. Patel SA, Velingkaar N, Makwana K, Chaudhari A, Kondratov R. Calorie restriction regulates circadian clock gene expression through BMAL1 dependent and independent mechanisms. Sci Rep. 2016;6:25970.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Pegoraro M, Tauber E. The role of microRNAs (miRNA) in circadian rhythmicity. J Genet. 2008;87:505–11.

    CAS  PubMed  Google Scholar 

  113. Pevet P, Challet E. Melatonin: both master clock output and internal time–giver in the circadian clocks network. J Physiol Paris. 2011;105:170–82.

    PubMed  Google Scholar 

  114. Pierpaoli W, Yi C. The involvement of pineal gland and melatonin in immunity and aging I. Thymus–mediated, immunoreconstituting and antiviral activity of thyrotropin–releasing hormone. J Neuroimmunol. 1990;27:99–109.

    CAS  PubMed  Google Scholar 

  115. Pifferi F, Dal-pan A, Languille S, Aujard F. Effects of resveratrol on daily rhythms of locomotor activity and body temperature in young and aged grey mouse lemurs. Oxidative Med Cell Longev. 2013;2013:187301.

    Google Scholar 

  116. Popa-Wagner A, Buga AM, Dumitrascu DI, Uzoni A, Thome J, Coogan AN. How does healthy aging impact on the circadian clock? J Neural Transm. 2017;124:89–97.

    CAS  PubMed  Google Scholar 

  117. Rabadi MH, Mayanna SK, Vincent AS. Predictors of mortality in veterans with traumatic spinal cord injury. Spinal Cord. 2013;51:784–8.

    CAS  PubMed  Google Scholar 

  118. Radogna F, Diederich M, Ghibelli L. Melatonin: a pleiotropic molecule regulating inflammation. Biochem Pharmacol. 2010;80:1844–52.

    CAS  PubMed  Google Scholar 

  119. Rakshit K, Thomas AP, Matveyenko AV. Does disruption of circadian rhythms contribute to beta-cell failure in type 2 diabetes? Curr Diab Rep. 2014;14:474.

    PubMed  PubMed Central  Google Scholar 

  120. Reddy MY, Jagota A. Melatonin has differential effects on age-induced stoichiometric changes in daily chronomics of serotonin metabolism in SCN of male Wistar rats. Biogerontology. 2015;16:285–302.

    CAS  PubMed  Google Scholar 

  121. Reddy VDK, Jagota A. Effect of restricted feeding on nocturnality and daily leptin rhythms in OVLT in aged male Wistar rats. Biogerontology. 2014;15:245–56.

    CAS  PubMed  Google Scholar 

  122. Reiter RJ, Tan DX, Korkmaz A, Erren TC, Piekarski C, Tamura H, Manchester LC. Light at night, chronodisruption, melatonin suppression, and cancer risk: a review. Crit Rev Oncog. 2007;13:303–28.

    PubMed  Google Scholar 

  123. Reiter RJ, Tan DX, Galano A. Melatonin: exceeding expectations. Physiology. 2014;29(5):325–33.

    CAS  PubMed  Google Scholar 

  124. Reppert SM, Wever DR. Coordination of circadian timing system. Nature. 2002;418:935–41.

    CAS  PubMed  Google Scholar 

  125. Robillard R, Naismith SL, Hickie IB. Recent advances in sleep-wake cycle and biological rhythms in bipolar disorder. Curr Psychiatry Rep. 2013;15:402.

    PubMed  Google Scholar 

  126. Sato S, Solanas G, Peixoto FO, Bee L, Symeonidi A, Schmidt MS, Brenner C, Masri S, Benitah SA, Sassone-Corsi P. Circadian reprogramming in the liver identifies metabolic pathways of aging. Cell. 2017;170:664–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Sehgal N, Gupta A, Valli RK, Joshi SD, Mills JT, Hamel E, Khanna P, Jain SC, Thakur SS, Ravindranath V. Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci. 2012;109:3510–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Sellix MT, Evans JA, Leise TL, Castanon-Cervantes O, Hill DD, DeLisser P, Block GD, Menaker M, Davidson AJ. Aging differentially affects the re-entrainment response of central and peripheral circadian oscillators. J Neurosci. 2012;32:16193–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Shen LR, Parnell LD, Ordovas JM, Lai CQ. Curcumin and aging. Biofactors. 2013;39:133–40.

    CAS  PubMed  Google Scholar 

  130. Shin EJ, Chung YH, Le HLT, Jeong JH, Dang DK, Nam Y, Wie MB, Nah SY, Nabeshima YI, Nabeshima T, Kim HC. Melatonin attenuates memory impairment induced by Klotho gene deficiency via interactive signaling between MT2 receptor, ERK, and Nrf2–related antioxidant potential. Int J Neuropsychopharmacol. 2015;18(6):pii: pyu105. https://doi.org/10.1093/ijnp/pyu105.

    Article  CAS  Google Scholar 

  131. Shrestha S, Zhu J, Wang Q, Du X, Liu F, Jiang J, Song J, Xing J, Sun D, Hou Q, Peng Y. Melatonin potentiates the antitumor effect of curcumin by inhibiting IKK β/NF- κ B/COX-2 signaling pathway. Int J Oncol. 2017;51:1249–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Solt LA, Wang Y, Banerjee S, Hughes T, Kojetin DJ, Lundasen T, Shin Y, Liu J, Cameron MD, Noel R, Yoo SH, Takahashi JS, Butler AA, Kamenecka TM, Burris TP. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature. 2012;485:62–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Somanath PR, Podrez EA, Chen J, Ma Y, Marchant K, Antoch M, Byzova TV. Deficiency in core circadian protein Bmal1 is associated with a prothrombotic and vascular phenotype. J Cell Physiol. 2011;226:132–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Sun L, Wang Y, Song Y, Cheng XR, Xia S, Rahman MR, Shi Y, Le G. Resveratrol restores the circadian rhythmic disorder of lipid metabolism induced by high-fat diet in mice. Biochem Biophys Res Commun. 2015;458:86–91.

    CAS  PubMed  Google Scholar 

  135. Sun X, Ran D, Zhao X, Huang Y, Long S, Liang F, Guo W, Nucifora FC Jr, Gu H, Lu X, Chen L, Zeng J, Ross CA, Pei Z. Melatonin attenuates hLRRK2–induced sleep disturbances and synaptic dysfunction in a Drosophila model of Parkinson’s disease. Mol Med Rep. 2016;13:3936–44.

    CAS  PubMed  Google Scholar 

  136. Swindell WR. Comparative analysis of microarray data identifies common responses to caloric restriction among mouse tissues. Mech Ageing Dev. 2008;129:138–53.

    CAS  PubMed  Google Scholar 

  137. Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18:164–79.

    CAS  PubMed  Google Scholar 

  138. Tan DX, Xu B, Zhou X, Reiter RJ. Associated health consequences and rejuvenation of the pineal gland. Molecules. 2018;23(2):pii: E301. https://doi.org/10.3390/molecules23020301.

    Article  CAS  Google Scholar 

  139. Tsai YM, Chien CF, Lin LC, Tsai TH. Curcumin and its nano-formulation: the kinetics of tissue distribution and blood-brain barrier penetration. Int J Pharm. 2011;416:331–8.

    CAS  PubMed  Google Scholar 

  140. Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, Iino M, Hashimoto S. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet. 2005;37:187–92.

    CAS  PubMed  Google Scholar 

  141. Vanselow K, Vanselow JT, Westermark PO, Reischl S, Maier B, Korte T, Herrmann A, Herzel H, Schlosser A, Kramer A. Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS). Genes Dev. 2006;20:2660–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Videnovic A, Zee PC. Consequences of circadian disruption on neurologic health. Sleep Med Clin. 2015;10:469–80.

    PubMed  PubMed Central  Google Scholar 

  143. Vinod C, Jagota A. Daily NO rhythms in peripheral clocks in aging male Wistar rats: protective effects of exogenous melatonin. Biogerontology. 2016;17:859–71.

    CAS  PubMed  Google Scholar 

  144. Vinod C, Jagota A. Daily Socs1 rhythms alter with aging differentially in peripheral clocks in male Wistar rats: therapeutic effects of melatonin. Biogerontology. 2017;18:333–45.

    CAS  PubMed  Google Scholar 

  145. von Gall C, Weaver DR. Loss of responsiveness to melatonin in the aging mouse suprachiasmatic nucleus. Neurobiol Aging. 2008;29:464–70.

    Google Scholar 

  146. Wadhwa R, Konar A, Kaul SC. Nootropic potential of Ashwagandha leaves: beyond traditional root extracts. Neurochem Int. 2016;95:109–18.

    CAS  PubMed  Google Scholar 

  147. Wang RH, Zhao T, Cui K, Hu G, Chen Q, Chen W, Wang XW, Soto-Gutierrez A, Zhao K, Deng CX. Negative reciprocal regulation between Sirt1 and Per2 modulates the circadian clock and aging. Sci Rep. 2016;6:28633.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Weinert D. Age-dependent changes of the circadian system. Chronobiol Int. 2000;17:261–83.

    CAS  PubMed  Google Scholar 

  149. Weinert D. Circadian temperature variation and ageing. Ageing Res Rev. 2010;9:51–60.

    PubMed  Google Scholar 

  150. Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol. 2010;72:551–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Winkelman JW, Armstrong MJ, Allen RP, Chaudhuri KR, Ondo W, Trenkwalder C, Zee PC, Gronseth GS, Gloss D, Zesiewicz T. Practice guideline summary: treatment of restless legs syndrome in adults: report of the guideline development, dissemination, and implementation Subcommittee of the American Academy of Neurology. Neurology. 2016;87:2585–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Witting W, Mirmiran M, Bos NP, Swaab DF. The effect of old age on the free-running period of circadian rhythms in rat. Chronobiol Int. 1994;11:103–12.

    CAS  PubMed  Google Scholar 

  153. Wyse CA, Coogan AN. Impact of aging on diurnal expression patterns of CLOCK and BMAL1 in the mouse brain. Brain Res. 2010;1337:21–31.

    CAS  PubMed  Google Scholar 

  154. Yamaguchi Y, Suzuki T, Mizoro Y, Kori H, Okada K, Chen Y, Fustin JM, Yamazaki F, Mizuguchi N, Zhang J, Dong X, Tsujimoto G, Okuno Y, Doi M, Okamura H. Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science. 2013;342:85–90.

    CAS  PubMed  Google Scholar 

  155. Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M, Block GD. Effects of aging on central and peripheral mammalian clocks. Proc Natl Acad Sci U S A. 2002;99:10801–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Yan SS, Wang W. The effect of lens aging and cataract surgery on circadian rhythm. Int J Ophthalmol. 2016;9:1066–74.

    PubMed  PubMed Central  Google Scholar 

  157. Yang Y, Duan W, Lin Y, Yi W, Liang Z, Yan J, Wang N, Deng C, Zhang S, Li Y, Chen W, Yu S, Yi D, Jin Z. SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury. Free Radic Biol Med. 2013;65:667–79.

    CAS  PubMed  Google Scholar 

  158. Yang G, Chen L, Grant GR, Paschos G, Song WL, Musiek ES, Lee V, McLoughlin SC, Grosser T, Cotsarelis G, FitzGerald GA. Timing of expression of the core clock gene Bmal1 influences its effects on aging and survival. Sci Transl Med. 2016;8:324ra16.

    PubMed  PubMed Central  Google Scholar 

  159. Yin L, Wang J, Klein PS, Lazar MA. Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science. 2006;311:1002–5.

    CAS  PubMed  Google Scholar 

  160. Yonei Y, Hattori A, Tsutsui K, Okawa M, Ishizuka B. Effects of melatonin: basics studies and clinical applications. Anti-Aging Med. 2010;7:85–91.

    Google Scholar 

  161. Yu EA, Weaver DR. Disrupting the circadian clock: gene-specific effects on aging, cancer, and other phenotypes. Aging (Albany NY). 2011;3:479–93.

    CAS  Google Scholar 

  162. Zhou QP, Jung L, Richards KC. The management of sleep and circadian disturbance in patients with dementia. Curr Neurol Neurosci Rep. 2012;12:193–204.

    PubMed  Google Scholar 

  163. Zhou B, Zhang Y, Zhang F, Xia Y, Liu J, Huang R, Wang Y, Hu Y, Wu J, Dai C, Wang H, Tu Y, Peng X, Wang Y, Zhai Q. CLOCK/BMAL1 regulates circadian change of mouse hepatic insulin sensitivity by SIRT1. Hepatology. 2014;59:2196–206.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

AJ is thankful to Professor Pramod Rath for giving this opportunity and sincere patience during preparation of manuscript. The work is supported by DBT (102/IFD/SAN/5407/2011-2012), ICMR (Ref. No. 55/7/2012-/BMS), and UPE II Grants to AJ. KK is thankful to DST-INSPIRE for SRF and NBT is thankful to UGC for SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Jagota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jagota, A., Kukkemane, K., Thummadi, N.B. (2020). Biological Rhythms and Aging. In: Rath, P. (eds) Models, Molecules and Mechanisms in Biogerontology. Springer, Singapore. https://doi.org/10.1007/978-981-32-9005-1_20

Download citation

Publish with us

Policies and ethics