Skip to main content

Targeting the NO-sGC-cGMP Pathway in Pulmonary Arterial Hypertension

  • Chapter
  • First Online:
Diagnosis and Treatment of Pulmonary Hypertension

Abstract

Pulmonary arterial hypertension (PAH) is characterized by an increase of more than 25 mmHg in pulmonary arterial blood pressure and a pulmonary capillary wedge pressure ≤15 mmHg. If left untreated, PAH is fatal, with only 34 % survival rate after 5 years (D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Kernis JT et al. Ann Intern Med 115, 343–9, (1991)). Pathologically, PAH is characterized by changes in the pulmonary arterial vascular wall leading to occlusion, increased pressure, right ventricular heart failure, and death. Current therapies for PAH include increasing the nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) axis, improving the prostacyclin pathway, or inhibiting the endothelin pathway. The NO-sGC-cGMP axis is a critical signaling cascade in PAH. Nitric oxide activates sGC, resulting in the synthesis of cGMP, a key mediator of pulmonary arterial vasodilatation that may also inhibit vascular smooth muscle proliferation and platelet aggregation. Dysregulation of the NO-sGC-cGMP axis results in pulmonary vascular inflammation, thrombosis, and constriction and ultimately leads to death from right heart failure. In this chapter, we will briefly discuss the role of the NO-sGC-cGMP pathway in PAH, potential and established treatment modalities to target this pathway, and their clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Kernis JT, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med. 1991;115:343–9.

    Article  PubMed  Google Scholar 

  2. Kaneko FT, Arroliga AC, Dweik RA, Comhair SA, Laskowski D, Oppedisano R, Thomassen MJ, Erzurum SC. Biochemical reaction products of nitric oxide as quantitative markers of primary pulmonary hypertension. Am J Respir Crit Care Med. 1998;158:917–23.

    Article  CAS  PubMed  Google Scholar 

  3. Archer SL, Djaballah K, Humbert M, Weir KE, Fartoukh M, Dall’ava-Santucci J, Mercier JC, Simonneau G, Dinh-Xuan AT. Nitric oxide deficiency in fenfluramine- and dexfenfluramine-induced pulmonary hypertension. Am J Respir Crit Care Med. 1998;158:1061–7.

    Article  CAS  PubMed  Google Scholar 

  4. Dudzinski DM, Igarashi J, Greif D, Michel T. The regulation and pharmacology of endothelial nitric oxide synthase. Annu Rev Pharmacol Toxicol. 2006;46:235–76.

    Article  CAS  PubMed  Google Scholar 

  5. Bredt DS, Snyder SH. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A. 1990;87:682–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tran QK, Black DJ, Persechini A. Dominant affectors in the calmodulin network shape the time courses of target responses in the cell. Cell Calcium. 2005;37:541–53.

    Article  CAS  PubMed  Google Scholar 

  7. Tran QK, Watanabe H. Calcium signalling in the endothelium. Handb Exp Pharmacol, 2006;145–87.

    Google Scholar 

  8. Tran QK, VerMeer M, Burgard MA, Hassan AB, Giles J. Hetero-oligomeric complex between the G protein-coupled estrogen receptor 1 and the plasma membrane Ca2+−ATPase 4b. J Biol Chem. 2015;290:13293–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tran, Q. K., Firkins, R., Giles, J., Francis, S., Matnishian, V., Tran, P., VerMeer, M., Jasurda, J., Burgard, M. A., and Gebert-Oberle, B. Estrogen enhances linkage in the vascular endothelial calmodulin network via a feedforward mechanism at the G protein-coupled estrogen receptor 1. J Biol Chem, 2016;pii: jbc.M115.697334.

    Google Scholar 

  10. Shaul PW, Wells LB, Horning KM. Acute and prolonged hypoxia attenuate endothelial nitric oxide production in rat pulmonary arteries by different mechanisms. J Cardiovasc Pharmacol. 1993;22:819–27.

    Article  CAS  PubMed  Google Scholar 

  11. Mount PF, Kemp BE, Power DA. Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. J Mol Cell Cardiol. 2007;42:271–9.

    Article  CAS  PubMed  Google Scholar 

  12. Tran QK, Leonard J, Black DJ, Persechini A. Phosphorylation within an autoinhibitory domain in endothelial nitric oxide synthase reduces the Ca(2+) concentrations required for calmodulin to bind and activate the enzyme. Biochemistry. 2008;47:7557–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tran QK, Leonard J, Black DJ, Nadeau OW, Boulatnikov IG, Persechini A. Effects of combined phosphorylation at Ser-617 and Ser-1179 in endothelial nitric-oxide synthase on EC50(Ca2+) values for calmodulin binding and enzyme activation. J Biol Chem. 2009;284:11892–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boo YC, Jo H. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. Am J Phys Cell Physiol. 2003;285:C499–508.

    Article  CAS  Google Scholar 

  15. Fleming I, Fisslthaler B, Dimmeler S, Kemp BE, Busse R. Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res. 2001;88:E68–75.

    Article  CAS  PubMed  Google Scholar 

  16. Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006;113:1708–14.

    Article  PubMed  Google Scholar 

  17. Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med. 1995;333:214–21.

    Article  CAS  PubMed  Google Scholar 

  18. Steudel W, Ichinose F, Huang PL, Hurford WE, Jones RC, Bevan JA, Fishman MC, Zapol WM. Pulmonary vasoconstriction and hypertension in mice with targeted disruption of the endothelial nitric oxide synthase (NOS 3) gene. Circ Res. 1997;81:34–41.

    Article  CAS  PubMed  Google Scholar 

  19. Campbell AI, Kuliszewski MA, Stewart DJ. Cell-based gene transfer to the pulmonary vasculature: Endothelial nitric oxide synthase overexpression inhibits monocrotaline-induced pulmonary hypertension. Am J Respir Cell Mol Biol. 1999;21:567–75.

    Article  CAS  PubMed  Google Scholar 

  20. Granton J, Langleben D, Kutryk MB, Camack N, Galipeau J, Courtman DW, Stewart DJ. Endothelial NO-synthase gene-enhanced progenitor cell therapy for pulmonary arterial hypertension: the PHACeT trial. Circ Res. 2015;117:645–54.

    Article  CAS  PubMed  Google Scholar 

  21. Murata T, Sato K, Hori M, Ozaki H, Karaki H. Decreased endothelial nitric-oxide synthase (eNOS) activity resulting from abnormal interaction between eNOS and its regulatory proteins in hypoxia-induced pulmonary hypertension. J Biol Chem. 2002;277:44085–92.

    Article  CAS  PubMed  Google Scholar 

  22. Murata T, Kinoshita K, Hori M, Kuwahara M, Tsubone H, Karaki H, Ozaki H. Statin protects endothelial nitric oxide synthase activity in hypoxia-induced pulmonary hypertension. Arterioscler Thromb Vasc Biol. 2005;25:2335–42.

    Article  CAS  PubMed  Google Scholar 

  23. Durante W. Role of arginase in vessel wall remodeling. Front Immunol. 2013;4:111.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Xu W, Kaneko FT, Zheng S, Comhair SA, Janocha AJ, Goggans T, Thunnissen FB, Farver C, Hazen SL, Jennings C, Dweik RA, Arroliga AC, Erzurum SC. Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension. FASEB J. 2004;18:1746–8.

    CAS  PubMed  Google Scholar 

  25. Chen B, Calvert AE, Cui H, Nelin LD. Hypoxia promotes human pulmonary artery smooth muscle cell proliferation through induction of arginase. Am J Phys Lung Cell Mol Phys. 2009;297:L1151–9.

    CAS  Google Scholar 

  26. Watts JA, Marchick MR, Gellar MA, Kline JA. Up-regulation of arginase II contributes to pulmonary vascular endothelial cell dysfunction during experimental pulmonary embolism. Pulm Pharmacol Ther. 2011;24:407–13.

    Article  CAS  PubMed  Google Scholar 

  27. Chen B, Calvert AE, Meng X, Nelin LD. Pharmacologic agents elevating cAMP prevent arginase II expression and proliferation of pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol. 2012;47:218–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Frostell C, Fratacci MD, Wain JC, Jones R, Zapol WM. Inhaled nitric oxide. A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation. 1991;83:2038–47.

    Article  CAS  PubMed  Google Scholar 

  29. Rossaint R, Falke KJ, Lopez F, Slama K, Pison U, Zapol WM. Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med. 1993;328:399–405.

    Article  CAS  PubMed  Google Scholar 

  30. Fierobe L, Brunet F, Dhainaut JF, Monchi M, Belghith M, Mira JP, Dall’ava-Santucci J, Dinh-Xuan AT. Effect of inhaled nitric oxide on right ventricular function in adult respiratory distress syndrome. Am J Respir Crit Care Med. 1995;151:1414–9.

    Article  CAS  PubMed  Google Scholar 

  31. Journois D, Pouard P, Mauriat P, Malhere T, Vouhe P, Safran D. Inhaled nitric oxide as a therapy for pulmonary hypertension after operations for congenital heart defects. J Thorac Cardiovasc Surg. 1994;107:1129–35.

    CAS  PubMed  Google Scholar 

  32. Moinard J, Manier G, Pillet O, Castaing Y. Effect of inhaled nitric oxide on hemodynamics and VA/Q inequalities in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1994;149:1482–7.

    Article  CAS  PubMed  Google Scholar 

  33. Williamson DJ, Hayward C, Rogers P, Wallman LL, Sturgess AD, Penny R, Macdonald PS. Acute hemodynamic responses to inhaled nitric oxide in patients with limited scleroderma and isolated pulmonary hypertension. Circulation. 1996;94:477–82.

    Article  CAS  PubMed  Google Scholar 

  34. Roberts Jr JD, Fineman JR, Morin 3rd FC, Shaul PW, Rimar S, Schreiber MD, Polin RA, Zwass MS, Zayek MM, Gross I, Heymann MA, Zapol WM. Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. The Inhaled Nitric Oxide Study Group. N Engl J Med. 1997;336:605–10.

    Article  CAS  PubMed  Google Scholar 

  35. Neonatal Inhaled Nitric Oxide Study, G. Inhaled nitric oxide in full-term and nearly full-term infants with hypoxic respiratory failure. N Engl J Med. 1997;336:597–604.

    Article  Google Scholar 

  36. Miller OI, Tang SF, Keech A, Celermajer DS. Rebound pulmonary hypertension on withdrawal from inhaled nitric oxide. Lancet. 1995;346:51–2.

    Article  CAS  PubMed  Google Scholar 

  37. Fernhoff NB, Derbyshire ER, Underbakke ES, Marletta MA. Heme-assisted S-nitrosation desensitizes ferric soluble guanylate cyclase to nitric oxide. J Biol Chem. 2012;287:43053–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao Y, Brandish PE, Ballou DP, Marletta MA. A molecular basis for nitric oxide sensing by soluble guanylate cyclase. Proc Natl Acad Sci U S A. 1999;96:14753–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stone JR, Marletta MA. Spectral and kinetic studies on the activation of soluble guanylate cyclase by nitric oxide. Biochemistry. 1996;35:1093–9.

    Article  CAS  PubMed  Google Scholar 

  40. Hofmann F, Feil R, Kleppisch T, Schlossmann J. Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol Rev. 2006;86:1–23.

    Article  CAS  PubMed  Google Scholar 

  41. Chen L, Daum G, Chitaley K, Coats SA, Bowen-Pope DF, Eigenthaler M, Thumati NR, Walter U, Clowes AW. Vasodilator-stimulated phosphoprotein regulates proliferation and growth inhibition by nitric oxide in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2004;24:1403–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li D, Zhou N, Johns RA. Soluble guanylate cyclase gene expression and localization in rat lung after exposure to hypoxia. Am J Phys. 1999;277:L841–7.

    CAS  Google Scholar 

  43. Schermuly RT, Stasch JP, Pullamsetti SS, Middendorff R, Muller D, Schluter KD, Dingendorf A, Hackemack S, Kolosionek E, Kaulen C, Dumitrascu R, Weissmann N, Mittendorf J, Klepetko W, Seeger W, Ghofrani HA, Grimminger F. Expression and function of soluble guanylate cyclase in pulmonary arterial hypertension. Eur Respir J. 2008;32:881–91.

    Article  CAS  PubMed  Google Scholar 

  44. Wolin MS, Gupte SA, Mingone CJ, Neo BH, Gao Q, Ahmad M. Redox regulation of responses to hypoxia and NO-cGMP signaling in pulmonary vascular pathophysiology. Ann N Y Acad Sci. 2010;1203:126–32.

    Article  CAS  PubMed  Google Scholar 

  45. Hoshino, M. L., L.; Ford, P.C. (1999) Nitric oxide complexes of metalloporphyrins. An overview of some mechanistic studies. Coord Chem Rev 187, 75-102

    Google Scholar 

  46. Dasgupta A, Bowman L, D’Arsigny CL, Archer SL. Soluble guanylate cyclase: a new therapeutic target for pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Clin Pharmacol Ther. 2015;97:88–102.

    Article  CAS  PubMed  Google Scholar 

  47. Stasch JP, Pacher P, Evgenov OV. Soluble guanylate cyclase as an emerging therapeutic target in cardiopulmonary disease. Circulation. 2011;123:2263–73.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Evgenov OV, Pacher P, Schmidt PM, Hasko G, Schmidt HH, Stasch JP. NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat Rev Drug Discov. 2006;5:755–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stasch JP, Evgenov OV. Soluble guanylate cyclase stimulators in pulmonary hypertension. Handb Exp Pharmacol. 2013;218:279–313.

    Article  CAS  PubMed  Google Scholar 

  50. Ghofrani HA, Galiè N, Grimminger F, Grünig E, Humbert M, Jing ZC, Keogh AM, Langleben D, Kilama MO, Fritsch A, Neuser D, Rubin LJ; PATENT-1 Study Group. Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med, 2013, 25;369(4):330–340

    Google Scholar 

  51. Ghofrani HA, D’Armini AM, Grimminger F, et al. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med. 2013;369(4):319–29.

    Article  CAS  PubMed  Google Scholar 

  52. Black SM, Sanchez LS, Mata-Greenwood E, et al. sGC and PDE5 are elevated in lambs with increased pulmonary blood flow and pulmonary hypertension. Am J Phys Lung Cell Mol Phys. 2001;281:L1051–7.

    CAS  Google Scholar 

  53. Murray F, MacLean MR, Pyne NJ. Increased expression of the cGMP-inhibited camp-specific (PDE3) and cGMP binding cGMP-specific (PDE5) phosphodiesterases in models of pulmonary hypertension. Br J Pharmacol. 2002;137:1187–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nagendran J, Archer SL, Soliman D, et al. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation. 2007;116:238–48.

    Article  CAS  PubMed  Google Scholar 

  55. Wharton J, Strange JW, Møller GM, et al. Antiproliferative effects of phosphodiesterase type 5 inhibition in human pulmonary artery cells. Am J Respir Crit Care Med. 2005;172:105–13.

    Article  PubMed  Google Scholar 

  56. Guazzi M. Clinical use of phosphodiesterase-5 inhibitors in chronic heart failure. Circ Heart Fail. 2008;1:272–80.

    Article  PubMed  Google Scholar 

  57. Corbin J, Rannels S, Neal D, Chang P, Grimes K, Beasley A, Francis S. Sildenafil citrate does not affect cardiac contractility in human or dog heart. Curr Med Res Opin. 2003;19:747–52.

    Article  CAS  PubMed  Google Scholar 

  58. Tran QK, Watanabe H. Novel oral prostacyclin analog with thromboxane synthase inhibitory activity for management of pulmonary arterial hypertension. Circ J. 2013;77:1994–5.

    Article  CAS  PubMed  Google Scholar 

  59. Ockaili R, Salloum F, Hawkins J, Kukreja RC. (2002) Sildenafil (Viagra) induces powerful cardioprotective effect via opening of mitochondrial KATP channels in rabbits. Am J Physiol Heart Circ Physiol 283: H1263–H1269.

    Google Scholar 

  60. Salloum FN, Ockaili RA, Wittkamp M, Marwaka VR, Kukreja RC. Vardenafil: a novel type 5 phosphodiesterase inhibitor reduces myocardial infarct size following ischemia/reperfusion injury via opening of mitochondrial KATP channels in rabbits. J Mol Cell Cardiol. 2006;40:405–11.

    Article  CAS  PubMed  Google Scholar 

  61. Garlid KD, Paucek P, Yarov-Yarovoy V, et al. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K channels: possible mechanism of cardioprotection. Circ Res. 1997;81:1072–82.

    Article  CAS  PubMed  Google Scholar 

  62. Dos Santos P, Kowaltowski AJ, Laclau MN, et al. (2002) Mechanisms by which opening the mitochondrial ATP-sensitive K channel protects the ischemic heart. Am J Physiol Heart Circ Physiol 283:H284–H295.

    Google Scholar 

  63. Giannetta E, Isidori AM, Galea N, Carbone I, Mandosi E, Vizza CD, Naro F, Morano S, Fedele F, Lenzi A. Chronic Inhibition of cGMP phosphodiesterase 5A improves diabetic cardiomyopathy: a randomized, controlled clinical trial using magnetic resonance imaging with myocardial tagging. Circulation. 2012;125(19):2323–33.

    Article  CAS  PubMed  Google Scholar 

  64. Krüger M, Kötter S, Grützner A, Lang P, Andresen C, Redfield MM, Butt E, dos Remedios CG, Linke WA. Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs. Circ Res. 2009;104(1):87–94.

    Article  PubMed  Google Scholar 

  65. Bishu K, Hamdani N, Mohammed SF, Kruger M, Ohtani T, Ogut O, Brozovich FV, Burnett Jr JC, Linke WA, Redfield MM. Sildenafil and B-type natriuretic peptide acutely phosphorylate titin and improve diastolic distensibility in vivo. Circulation. 2011;124(25):2882–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Weimann J, Ullrich R, Hromi J, Fujino Y, Clark MW, Bloch KD, Zapol WM. Sildenafil is a pulmonary vasodilator in awake lambs with acute pulmonary hypertension. Anesthesiology. 2000;92(6):1702–12.

    Article  CAS  PubMed  Google Scholar 

  67. Ichinose F, Erana-Garcia J, Hromi J, Raveh Y, Jones R, Krim L, MW C, JD W, KD B, WM Z. Nebulized sildenafil is a selective pulmonary vasodilator in lambs with acute pulmonary hypertension. Crit Care Med. 2001;29(5):1000–5.

    Article  CAS  PubMed  Google Scholar 

  68. Prasad S, Wilkinson J, Gatzoulis MA. Sildenafil in primary pulmonary hypertension. N Engl J Med. 2000;343(18):1342.

    Article  CAS  PubMed  Google Scholar 

  69. Watanabe H, Ohashi K, Takeuchi K, Yamashita K, Yokoyama T, Tran QK, Satoh H, Terada H, Ohashi H, Hayashi H. Sildenafil for primary and secondary pulmonary hypertension. Clin Pharmacol Ther. 2002;71(5):398–402.

    Article  PubMed  Google Scholar 

  70. Galiè N, Ghofrani HA, Torbicki A, Barst RJ, Rubin LJ, Badesch D, Fleming T, Parpia T, Burgess G, Branzi A, Grimminger F, Kurzyna M, Simonneau G, Sildenafil Use in Pulmonary Arterial Hypertension (SUPER) Study Group. Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med. 2005;353(20):2148–57.

    Article  PubMed  Google Scholar 

  71. Rubin LJ, Badesch DB, Fleming TR, Galiè N, Simonneau G, Ghofrani HA, Oakes M, Layton G, Serdarevic-Pehar M, McLaughlin VV, Barst RJ, SUPER-2 Study Group. Long-term treatment with sildenafil citrate in pulmonary arterial hypertension: the SUPER-2 study. Chest. 2011;140(5):1274–83.

    Article  CAS  PubMed  Google Scholar 

  72. Galiè N, Brundage BH, Ghofrani HA, Oudiz RJ, Simonneau G, Safdar Z, Shapiro S, White RJ, Chan M, Beardsworth A, Frumkin L, Barst RJ; Pulmonary Arterial Hypertension and Response to Tadalafil (PHIRST) Study Group. Tadalafil therapy for pulmonary arterial hypertension. Circulation. 2009, 119(22):2894-2903.

    Google Scholar 

  73. Oudiz RJ, Brundage BH, Galiè N, Ghofrani HA, Simonneau G, Botros FT, Chan M, Beardsworth A, Barst RJ, PHIRST Study Group. Tadalafil for the treatment of pulmonary arterial hypertension: a double-blind 52-week uncontrolled extension study. J Am Coll Cardiol. 2012;60(8):768–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Watanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Watanabe, H., Tran, QK. (2017). Targeting the NO-sGC-cGMP Pathway in Pulmonary Arterial Hypertension. In: Fukumoto, Y. (eds) Diagnosis and Treatment of Pulmonary Hypertension. Springer, Singapore. https://doi.org/10.1007/978-981-287-840-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-840-3_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-839-7

  • Online ISBN: 978-981-287-840-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics