Skip to main content

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 1538 Accesses

Abstract

This chapter contains an introduction to the fundamental principles underlying modern computational chemistry methods and their application in the field of the modeling of chemocatalytic biomass conversion. In the methods part, the basics and limitations of wavefunction-based methods and density functional theory (DFT) approaches as well as the classic and ab initio molecular dynamic methodologies are discussed. Their usefulness when applied to practical problems of catalytic biomass valorization is then illustrated by recent mechanistic studies. The important conclusion is that, with such state-of-the-art methods, we can answer increasingly complex questions relevant to the valorization of cellulosic biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lewars EG (2011) Computational chemistry: introduction to the theory and applications of molecular and quantum mechanics, 2nd edn. Springer, The Netherlands

    Book  Google Scholar 

  2. Frank J (2006) Introduction to computational chemistry, 2nd edn. Wiley, Chichester

    Google Scholar 

  3. Cramer CJ (2004) Essentials of computational chemistry: theories and models, 2nd edn. Wiley, Chichester

    Google Scholar 

  4. Krishnan R, Schlegel HB, Pople JA (1980) Derivative studies in configuration–interaction theory. J Chem Phys 72(8):4654–4655

    Article  MathSciNet  Google Scholar 

  5. Pople JA, Seeger R, Krishnan R (1977) Variational configuration interaction methods and comparison with perturbation theory. Int J Quantum Chem 12(S11):149–163

    Article  Google Scholar 

  6. Raghavachari K, Pople JA (1981) Calculation of one-electron properties using limited configuration interaction techniques. Int J Quantum Chem 20(5):1067–1071

    Article  Google Scholar 

  7. Purvis GD, Bartlett RJ (1982) A full coupled‐cluster singles and doubles model: the inclusion of disconnected triples. J Chem Phys 76(4):1910–1918

    Article  Google Scholar 

  8. Scuseria GE, Janssen CL, Schaefer HF (1988) An efficient reformulation of the closed‐shell coupled cluster single and double excitation (CCSD) equations. J Chem Phys 89(12):7382–7387

    Article  Google Scholar 

  9. Curtiss LA, Jones C, Trucks GW et al (1990) Gaussian‐1 theory of molecular energies for second‐row compounds. J Chem Phys 93(4):2537–2545

    Article  Google Scholar 

  10. Curtiss LA, Raghavachari K, Trucks GW et al (1991) Gaussian‐2 theory for molecular energies of first‐ and second‐row compounds. J Chem Phys 94(11):7221–7230

    Article  Google Scholar 

  11. Curtiss LA, Raghavachari K, Redfern PC et al (1998) Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J Chem Phys 109(18):7764–7776

    Article  Google Scholar 

  12. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory. J Chem Phys 126(8):084108

    Google Scholar 

  13. Harrison NA (2003) An introduction to density functional theory. In: Computational Materials Science, vol 187. Ios Press, Washington, DC

    Google Scholar 

  14. Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory, 2nd edn. Wiley, Weinheim

    Book  Google Scholar 

  15. Sholl D, Steckel JA (2009) Density functional theory: a practical introduction. Wiley, New Jersey

    Book  Google Scholar 

  16. Henderson TM, Janesko BG, Scuseria GE (2008) Range separation and local hybridization in density functional theory. J Phys Chem A 112(49):12530–12542

    Article  Google Scholar 

  17. Capelle K (2006) A bird’s-eye view of density-functional theory. Braz J Phys 36:1318–1343

    Article  Google Scholar 

  18. Cremer D (2001) Density functional theory: coverage of dynamic and non-dynamic electron correlation effects. Mol Phys 99(23):1899–1940

    Article  Google Scholar 

  19. Baerends EJ, Gritsenko OV (1997) A quantum chemical view of density functional theory. J Phys Chem A 101(30):5383–5403

    Article  Google Scholar 

  20. Sousa SF, Fernandes PA, Ramos MJ (2007) General performance of density functionals. J Phys Chem A 111(42):10439–10452

    Article  Google Scholar 

  21. Becke A (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100

    Article  Google Scholar 

  22. Lee C, Yang W, Parr R (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789

    Article  Google Scholar 

  23. Lee TJ, Taylor PR (1989) A diagnostic for determining the quality of single-reference electron correlation methods. Int J Quantum Chem 36(S23):199–207

    Article  Google Scholar 

  24. Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54(23):16533–16539

    Article  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  Google Scholar 

  26. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple [Phys Rev Lett 77:3865 (1996)]. Phys Rev Lett 78(7):1396–1396

    Google Scholar 

  27. Cohen AJ, Mori-Sánchez P, Yang W (2011) Challenges for density functional theory. Chem Rev 112(1):289–320

    Article  Google Scholar 

  28. Zahariev F, Leang SS, Gordon MS (2013) Functional derivatives of meta-generalized gradient approximation (meta-GGA) type exchange-correlation density functionals. J Chem Phys 138:244108

    Article  Google Scholar 

  29. Tao J, Perdew JP, Staroverov VN et al (2003) Climbing the density functional ladder: nonempirical meta–generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91(14):146401

    Article  Google Scholar 

  30. Zhao Y, Schultz NE, Truhlar DG (2005) Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. J Chem Phys 123:161103

    Article  Google Scholar 

  31. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101

    Article  Google Scholar 

  32. Becke AD (1993) A new mixing of Hartree–Fock and local density‐functional theories. J Chem Phys 98(2):1372–1377

    Article  Google Scholar 

  33. Becke AD (1993) Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  Google Scholar 

  34. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110(13):6158–6170

    Article  Google Scholar 

  35. Heyd J, Peralta JE, Scuseria GE et al (2005) Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J Chem Phys 123:174101

    Article  Google Scholar 

  36. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57

    Article  Google Scholar 

  37. Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128:084106

    Article  Google Scholar 

  38. Chai J-D, Head-Gordon M (2009) Long-range corrected double-hybrid density functionals. J Chem Phys 131:174105

    Article  Google Scholar 

  39. Peverati R, Truhlar DG (2011) Improving the accuracy of hybrid meta-GGA density functionals by range separation. J Phys Chem Lett 2(21):2810–2817

    Article  Google Scholar 

  40. Peverati R, Truhlar DG (2012) Screened-exchange density functionals with broad accuracy for chemistry and solid-state physics. Phys Chem Chem Phys 14(47):16187–16191

    Article  Google Scholar 

  41. Dion M, Rydberg H, Schröder E et al (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92(24):246401

    Article  Google Scholar 

  42. Lee K, Murray ÉD, Kong L et al (2010) Higher-accuracy van der Waals density functional. Phys Rev B 82(8):081101

    Article  Google Scholar 

  43. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41(2):157–167

    Article  Google Scholar 

  44. von Lilienfeld OA, Tavernelli I, Rothlisberger U et al (2004) Optimization of effective atom centered potentials for London dispersion forces in density functional theory. Phys Rev Lett 93(15):153004

    Article  Google Scholar 

  45. Sun YY, Kim Y-H, Lee K et al (2008) Accurate and efficient calculation of van der Waals interactions within density functional theory by local atomic potential approach. J Chem Phys 129:154102

    Article  Google Scholar 

  46. Becke AD, Johnson ER (2005) Exchange-hole dipole moment and the dispersion interaction. J Chem Phys 122:154104

    Article  Google Scholar 

  47. Johnson ER, Becke AD (2006) A post-Hartree-Fock model of intermolecular interactions: inclusion of higher-order corrections. J Chem Phys 124:174104

    Article  Google Scholar 

  48. Grimme S (2011) Density functional theory with London dispersion corrections. WIREs Comput Mol Sci 1(2):211–228

    Article  Google Scholar 

  49. Wu X, Vargas MC, Nayak S et al (2001) Towards extending the applicability of density functional theory to weakly bound systems. J Chem Phys 115(19):8748–8757

    Article  Google Scholar 

  50. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25(12):1463–1473

    Article  Google Scholar 

  51. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  Google Scholar 

  52. Grimme S, Antony J, Ehrlich S et al (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  53. Truhlar DG (2003) Potential energy surfaces. In: Meyers RA (ed) Encyclopedia of physical science and technology, 3rd edn. Academic, New York, p 9–17

    Chapter  Google Scholar 

  54. Gaussian. http://www.gaussian.com/. Accessed 16 Jan 2015

  55. Turbomole. http://www.turbomole.com/. Accessed 16 Jan 2015

  56. ADF. https://www.scm.com/ADF/. Accessed 16 Jan 2015

  57. DMol3. http://accelrys.com/. Accessed 16 Jan 2015

  58. VASP. http://www.vasp.at/. Accessed 16 Jan 2015

  59. CASTEP. http://www.castep.org/. Accessed 16 Jan 2015

  60. WIEN2K. http://www.wien2k.at/. Accessed 16 Jan 2015

  61. Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  62. Frenkel D, Smit B (2002) Understanding molecular simulation, 2nd edn. Academic, London

    MATH  Google Scholar 

  63. Nose S (1984) A molecular-dynamics method for simulations in the canonical ensemble. Mol Phys 52(2):255–268

    Article  MathSciNet  Google Scholar 

  64. Andersen HC (1980) Molecular-dynamics simulations at constant pressure and-or temperature. J Chem Phys 72(4):2384–2393

    Article  Google Scholar 

  65. Gromacs (2015) http://www.gromacs.org/

  66. Amber. http://ambermd.org/#code. Accessed 16 Jan 2015

  67. LAMMPS. http://lammps.sandia.gov/. Accessed 16 Jan 2015

  68. Hassanali AA, Cuny J, Verdolino V et al (2014) Aqueous solutions: state of the art in ab initio molecular dynamics. Phil Trans R Soc A 372:20120482

    Article  MathSciNet  Google Scholar 

  69. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55(22):2471–2474

    Article  Google Scholar 

  70. Andreoni W, Curioni A (2000) New advances in chemistry and materials science with CPMD and parallel computing. Parallel Comput 26(7–8):819–842

    Article  MATH  Google Scholar 

  71. Tse JS (2002) Ab initio molecular dynamics with density functional theory. Annu Rev Phys Chem 53:249–290

    Article  Google Scholar 

  72. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci 99(20):12562–12566

    Article  Google Scholar 

  73. Iannuzzi M, Laio A, Parrinello M (2003) Efficient exploration of reactive potential energy surfaces using car-parrinello molecular dynamics. Phys Rev Lett 90(23):238302

    Article  Google Scholar 

  74. Laio A, Gervasio FL (2008) Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys 71(12):126601

    Article  Google Scholar 

  75. Barducci A, Bonomi M, Parrinello M (2011) Metadynamics. WIREs Comput Mol Sci 1(5):826–843

    Article  Google Scholar 

  76. CP2K. http://www.cp2k.org/; CPMD. http://www.cp2k.org/. Accessed 16 Jan 2015

  77. Lin H, Truhlar DG (2007) QM/MM: what have we learned, where are we, and where do we go from here? Theor Chem Acc 117(2):185–199

    Article  Google Scholar 

  78. Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed 48(7):1198–1229

    Article  Google Scholar 

  79. Senn HM, Thiel W (2007) QM/MM methods for biological systems. In: Reiher M (ed) Atomistic approaches in modern biology: from quantum chemistry to molecular simulations, vol 268, Topics in current chemistry. Springer, Berlin, p 173–290

    Chapter  Google Scholar 

  80. Bernstein N, Varnai C, Solt I et al (2012) QM/MM simulation of liquid water with an adaptive quantum region. Phys Chem Chem Phys 14(2):646–656

    Article  Google Scholar 

  81. Bulo RE, Ensing B, Sikkema J et al (2009) Toward a practical method for adaptive QM/MM simulations. J Chem Theory Comput 5(9):2212–2221

    Article  Google Scholar 

  82. Heyden A, Lin H, Truhlar DG (2007) Adaptive partitioning in combined quantum mechanical and molecular mechanical calculations of potential energy functions for multiscale simulations. J Phys Chem B 111(9):2231–2241

    Article  Google Scholar 

  83. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3093

    Article  Google Scholar 

  84. Mennucci B, Cammi R (2007) Continuum solvation models in chemical physics: from theory to applications. Wiley, Chichester

    Book  Google Scholar 

  85. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082

    Article  Google Scholar 

  86. Nishiyama Y, Sugiyama J, Chanzy H et al (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306

    Article  Google Scholar 

  87. Payal RS, Bharath R, Periyasamy G et al (2012) Density functional theory investigations on the structure and dissolution mechanisms for cellobiose and xylan in an ionic liquid: gas phase and cluster calculations. J Phys Chem B 116(2):833–840

    Article  Google Scholar 

  88. Danielache S, Mizuno M, Shimada S et al (2005) Analysis of C-13 NMR chemical shielding and XPS for cellulose and chitosan by DFT calculations using the model molecules. Polym J 37(1):21–29

    Article  Google Scholar 

  89. Lee CM, Mohamed NMA, Watts HD et al (2013) Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose I alpha and I beta. J Phys Chem B 117(22):6681–6692

    Article  Google Scholar 

  90. Bergenstråhle M, Berglund LA, Mazeau K (2007) Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J Phys Chem B 111(30):9138–9145

    Article  Google Scholar 

  91. Shen T, Gnanakaran S (2009) The stability of cellulose: a statistical perspective from a coarse-grained model of hydrogen-bond networks. Biophys J 96(8):3032–3040

    Article  Google Scholar 

  92. Shen T, Langan P, French AD et al (2009) Conformational flexibility of soluble cellulose oligomers: chain length and temperature dependence. J Am Chem Soc 131(41):14786–14794

    Article  Google Scholar 

  93. Matthews JF, Bergenstrahle M, Beckham GT et al (2011) High-temperature behavior of cellulose I. J Phys Chem B 115(10):2155–2166

    Article  Google Scholar 

  94. Wohlert J, Bergenstrahle-Wohlert M, Berglund LA (2012) Deformation of cellulose nanocrystals: entropy, internal energy and temperature dependence. Cellulose 19(6):1821–1836

    Article  Google Scholar 

  95. Liu H, Sale KL, Simmons BA et al (2011) Molecular dynamics study of polysaccharides in binary solvent mixtures of an ionic liquid and water. J Phys Chem B 115(34):10251–10258

    Article  Google Scholar 

  96. Cho HM, Gross AS, Chu J-W (2011) Dissecting force interactions in cellulose deconstruction reveals the required solvent versatility for overcoming biomass recalcitrance. J Am Chem Soc 133(35):14033–14041

    Article  Google Scholar 

  97. Mostofian B, Smith JC, Cheng X (2014) Simulation of a cellulose fiber in ionic liquid suggests a synergistic approach to dissolution. Cellulose 21(2):983–997

    Article  Google Scholar 

  98. Gross AS, Bell AT, Chu J-W (2012) Entropy of cellulose dissolution in water and in the ionic liquid 1-butyl-3-methylimidazolim chloride. Phys Chem Chem Phys 14(23):8425–8430

    Article  Google Scholar 

  99. Matthews JF, Beckham GT, Bergenstrahle-Wohlert M et al (2012) Comparison of cellulose I beta simulations with three carbohydrate force fields. J Chem Theory Comput 8(2):735–748

    Article  Google Scholar 

  100. Rinaldi R, Palkovits R, Schuth F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Ed 47(42):8047–8050

    Article  Google Scholar 

  101. Rinaldi R, Meine N, vom Stein J et al (2010) Which controls the depolymerization of cellulose in ionic liquids: the solid acid catalyst or cellulose? ChemSusChem 3(2):266–276

    Article  Google Scholar 

  102. Binder JB, Raines RT (2010) Fermentable sugars by chemical hydrolysis of biomass. Proc Natl Acad Sci 107(10):4516–4521

    Article  Google Scholar 

  103. Van De Vyver S, Geboers J, Jacobs PA et al (2011) Recent advances in the catalytic conversion of cellulose. ChemCatChem 3(1):82–94

    Article  Google Scholar 

  104. Rinaldi R, Schüth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2(12):1096–1107

    Article  Google Scholar 

  105. Fleming KL, Pfaendtner J (2013) Characterizing the catalyzed hydrolysis of beta-1,4 glycosidic bonds using density functional theory. J Phys Chem A 117(51):14200–14208

    Article  Google Scholar 

  106. Vanoye L, Fanselow M, Holbrey JD et al (2009) Kinetic model for the hydrolysis of lignocellulosic biomass in the ionic liquid, 1-ethyl-3-methyl-imidazolium chloride. Green Chem 11(3):390–396

    Article  Google Scholar 

  107. Beck JM, Miller SM, Peczuh MW et al (2012) C2 hydroxyl group governs the difference in hydrolysis rates of methyl-α-d-glycero-d-guloseptanoside and methyl-β-d-glycero-d-guloseptanoside. J Org Chem 77(9):4242–4251

    Article  Google Scholar 

  108. Loerbroks C, Rinaldi R, Thiel W (2013) The electronic nature of the 1,4-β-glycosidic bond and its chemical environment: DFT insights into cellulose chemistry. Chem Eur J 19(48):16282–16294

    Article  Google Scholar 

  109. Liang X, Montoya A, Haynes BS (2011) Local site selectivity and conformational structures in the glycosidic bond scission of cellobiose. J Phys Chem B 115(36):10682–10691

    Article  Google Scholar 

  110. Bosma WB, Appell M, Willett JL et al (2006) Stepwise hydration of cellobiose by DFT methods: 2. Energy contributions to relative stabilities of cellobiose center dot(H2O)(1–4) complexes. J Mol Struct (THEOCHEM) 776(1–3):21–31

    Article  Google Scholar 

  111. Yang G, Pidko EA, Hensen EJM (2012) Mechanism of Bronsted acid-catalyzed conversion of carbohydrates. J Catal 295:122–132

    Article  Google Scholar 

  112. Bozell JJ, Moens L, Elliott DC et al (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycl 28(3–4):227–239

    Article  Google Scholar 

  113. van Putten R-J, Soetedjo JNM, Pidko EA et al (2013) Dehydration of different ketoses and aldoses to 5-hydroxymethylfurfural. ChemSusChem 6(9):1681–1687

    Article  Google Scholar 

  114. Wang T, Nolte MW, Shanks BH (2014) Catalytic dehydration of C-6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chem 16(2):548–572

    Article  Google Scholar 

  115. Liu DJ, Nimlos MR, Johnson DK et al (2010) Free energy landscape for glucose condensation reactions. J Phys Chem A 114(49):12936–12944

    Article  Google Scholar 

  116. Qian X (2011) Mechanisms and energetics for acid catalyzed β-d-glucose conversion to 5-hydroxymethylfurfurl. J Phys Chem A 115(42):11740–11748

    Article  Google Scholar 

  117. Qian X (2012) Mechanisms and energetics for Bronsted acid-catalyzed glucose condensation, dehydration and isomerization reactions. Top Catal 55(3–4):218–226

    Article  Google Scholar 

  118. Qian X (2013) Free energy surface for Bronsted acid-catalyzed glucose ring-opening in aqueous solution. J Phys Chem B 117(39):11460–11465

    Article  Google Scholar 

  119. Qian X, Liu D (2014) Free energy landscape for glucose condensation and dehydration reactions in dimethyl sulfoxide and the effects of solvent. Carbohydr Res 388:50–60

    Article  Google Scholar 

  120. Qian X, Nimlos MR, Davis M et al (2005) Ab initio molecular dynamics simulations of β-d-glucose and β-d-xylose degradation mechanisms in acidic aqueous solution. Carbohydr Res 340(14):2319–2327

    Article  Google Scholar 

  121. Qian X, Johnson DK, Himmel ME et al (2010) The role of hydrogen-bonding interactions in acidic sugar reaction pathways. Carbohydr Res 345(13):1945–1951

    Article  Google Scholar 

  122. Assary RS, Redfern PC, Greeley J et al (2011) Mechanistic insights into the decomposition of fructose to hydroxy methyl furfural in neutral and acidic environments using high-level quantum chemical methods. J Phys Chem B 115(15):4341–4349

    Article  Google Scholar 

  123. Assary RS, Kim T, Low JJ et al (2012) Glucose and fructose to platform chemicals: understanding the thermodynamic landscapes of acid-catalysed reactions using high-level ab initio methods. Phys Chem Chem Phys 14(48):16603–16611

    Article  Google Scholar 

  124. Swift TD, Bagia C, Choudhary V et al (2014) Kinetics of homogeneous Bronsted acid catalyzed fructose dehydration and 5-hydroxymethyl furfural rehydration: a combined experimental and computational study. ACS Catal 4(1):259–267

    Article  Google Scholar 

  125. Caratzoulas S, Vlachos DG (2011) Converting fructose to 5-hydroxymethylfurfural: a quantum mechanics/molecular mechanics study of the mechanism and energetics. Carbohydr Res 346(5):664–672

    Article  Google Scholar 

  126. Mushrif SH, Caratzoulas S, Vlachos DG (2012) Understanding solvent effects in the selective conversion of fructose to 5-hydroxymethyl-furfural: a molecular dynamics investigation. Phys Chem Chem Phys 14(8):2637–2644

    Article  Google Scholar 

  127. Peng LC, Lin L, Zhang JH et al (2010) Catalytic conversion of cellulose to levulinic acid by metal chlorides. Molecules 15(8):5258–5272

    Article  Google Scholar 

  128. Rasrendra CB, Makertihartha I, Adisasmito S et al (2010) Green chemicals from d-glucose: systematic studies on catalytic effects of inorganic salts on the chemo-selectivity and yield in aqueous solutions. Top Catal 53(15–18):1241–1247

    Article  Google Scholar 

  129. Pagan-Torres YJ, Wang TF, Gallo JMR et al (2012) Production of 5-hydroxymethylfurfural from glucose using a combination of Lewis and Bronsted acid catalysts in water in a biphasic reactor with an alkylphenol solvent. ACS Catal 2(6):930–934

    Article  Google Scholar 

  130. Saha B, Abu-Omar MM (2014) Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem 16(1):24–38

    Article  Google Scholar 

  131. Choudhary V, Mushrif SH, Ho C et al (2013) Insights into the interplay of Lewis and Bronsted acid catalysts in glucose and fructose conversion to 5-(Hydroxymethyl)furfural and levulinic acid in aqueous media. J Am Chem Soc 135(10):3997–4006

    Article  Google Scholar 

  132. Choudhary V, Pinar AB, Lobo RF et al (2013) Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media. ChemSusChem 6(12):2369–2376

    Article  Google Scholar 

  133. Roman-Leshkov Y, Davis ME (2011) Activation of carbonyl-containing molecules with solid Lewis acids in aqueous media. ACS Catal 1(11):1566–1580

    Article  Google Scholar 

  134. Otto S, Bertoncin F, Engberts JBFN (1996) Lewis acid catalysis of a Diels − Alder reaction in water. J Am Chem Soc 118(33):7702–7707

    Article  Google Scholar 

  135. Otto S, Engberts JBFN (1995) Lewis-acid catalysis of a Diels-Alder reaction in water. Tetrahedron Lett 36(15):2645–2648

    Article  Google Scholar 

  136. Zhao H, Holladay JE, Brown H et al (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316(5831):1597–1600

    Article  Google Scholar 

  137. Hu S, Zhang Z, Song J et al (2009) Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid. Green Chem 11(11):1746–1749

    Article  Google Scholar 

  138. Zakrzewska ME, Bogel-Łukasik E, Bogel-Łukasik R (2011) Ionic liquid-mediated formation of 5-hydroxymethylfurfural—a promising biomass-derived building block. Chem Rev 111(2):397–417

    Article  Google Scholar 

  139. Stahlberg T, Fu W, Woodley JM et al (2011) Synthesis of 5-(Hydroxymethyl)furfural in ionic liquids: paving the way to renewable chemicals. ChemSusChem 4(4):451–458

    Article  Google Scholar 

  140. Stahlberg T, Rodriguez-Rodriguez S, Fristrup P et al (2011) Metal-free dehydration of glucose to 5-(Hydroxymethyl)furfural in ionic liquids with boric acid as a promoter. Chem Eur J 17(5):1456–1464

    Article  Google Scholar 

  141. Pidko EA, Degirmenci V, van Santen RA et al (2010) Glucose activation by transient Cr2+ dimers. Angew Chem Int Ed 49(14):2530–2534

    Article  Google Scholar 

  142. Yong G, Zhang Y, Ying JY (2008) Efficient catalytic system for the selective production of 5-hydroxymethylfurfural from glucose and fructose. Angew Chem Int Ed 47(48):9345–9348

    Article  Google Scholar 

  143. Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131(5):1979–1985

    Article  Google Scholar 

  144. Zhang Y, Pidko EA, Hensen EJM (2011) Molecular aspects of glucose dehydration by chromium chlorides in ionic liquids. Chem Eur J 17(19):5281–5288

    Article  Google Scholar 

  145. Pidko EA, Degirmenci V, van Santen RA et al (2010) Coordination properties of ionic liquid-mediated chromium(II) and copper(II) chlorides and their complexes with glucose. Inorg Chem 49(21):10081–10091

    Article  Google Scholar 

  146. Pidko EA, Degirmenci V, Hensen EJM (2012) On the mechanism of Lewis acid catalyzed glucose transformations in ionic liquids. ChemCatChem 4(9):1263–1271

    Article  Google Scholar 

  147. Corma A, Nemeth LT, Renz M et al (2001) Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations. Nature 412(6845):423–425

    Article  Google Scholar 

  148. Corma A, García H (2002) Lewis acids as catalysts in oxidation reactions: from homogeneous to heterogeneous systems. Chem Rev 102(10):3837–3892

    Article  Google Scholar 

  149. Zhu Y, Chuah G, Jaenicke S (2004) Chemo- and regioselective Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by Al-free Zr-zeolite beta. J Catal 227(1):1–10

    Article  Google Scholar 

  150. Moliner M, Roman-Leshkov Y, Davis ME (2010) Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proc Natl Acad Sci 107(14):6164–6168

    Article  Google Scholar 

  151. Nikolla E, Roman-Leshkov Y, Moliner M et al (2011) “One-pot” synthesis of 5-(hydroxymethyl)furfural from carbohydrates using tin-beta zeolite. ACS Catal 1(4):408–410

    Article  Google Scholar 

  152. Gounder R, Davis ME (2013) Monosaccharide and disaccharide isomerization over Lewis acid sites in hydrophobic and hydrophilic molecular sieves. J Catal 308:176–188

    Article  Google Scholar 

  153. Boronat M, Concepcion P, Corma A et al (2005) Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies. J Catal 234(1):111–118

    Article  Google Scholar 

  154. Bermejo-Deval R, Assary RS, Nikolla E et al (2012) Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. Proc Natl Acad Sci 109(25):9727–9732

    Article  Google Scholar 

  155. Boronat M, Corma A, Renz M (2006) Mechanism of the Meerwein-Ponndorf-Verley-Oppenauer (MPVO) redox equilibrium on Sn- and Zr-beta zeolite catalysts. J Phys Chem B 110(42):21168–21174

    Article  Google Scholar 

  156. Bordiga S, Bonino F, Damin A et al (2007) Reactivity of Ti(iv) species hosted in TS-1 towards H2O2-H2O solutions investigated by ab initio cluster and periodic approaches combined with experimental XANES and EXAFS data: a review and new highlights. Phys Chem Chem Phys 9(35):4854–4878

    Article  Google Scholar 

  157. Roman-Leshkov Y, Moliner M, Labinger JA et al (2010) Mechanism of glucose isomerization using a solid Lewis acid catalyst in water. Angew Chem Int Ed 49(47):8954–8957

    Article  Google Scholar 

  158. Yang G, Pidko EA, Hensen EJM (2013) The mechanism of glucose isomerization to fructose over Sn-BEA zeolite: a periodic density functional theory study. ChemSusChem 6(9):1688–1696

    Article  Google Scholar 

  159. Li G, Pidko EA, Hensen EJM (2014) Synergy between Lewis acid sites and hydroxyl groups for the isomerization of glucose to fructose over Sn-containing zeolites: a theoretical perspective. Catal Sci Technol 4(8):2241–2250

    Article  Google Scholar 

  160. Rai N, Caratzoulas S, Vlachos DG (2013) Role of silanol group in Sn-beta zeolite for glucose isomerization and epimerization reactions. ACS Catal 3(10):2294–2298

    Article  Google Scholar 

  161. Kovalevsky AY, Hanson L, Fisher SZ et al (2010) Metal ion roles and the movement of hydrogen during reaction catalyzed by D-xylose isomerase: a joint X-ray and neutron diffraction study. Structure 18(6):688–699

    Article  Google Scholar 

  162. Allen KN, Lavie A, Farber GK et al (1994) Isotopic exchange plus substrate and inhibition kinetics of D-xylose isomerase do not support a proton-transfer mechanism. Biochemistry 33(6):1481–1487

    Article  Google Scholar 

  163. Li Y-P, Head-Gordon M, Bell AT (2014) Analysis of the reaction mechanism and catalytic activity of metal-substituted beta zeolite for the isomerization of glucose to fructose. ACS Catal 4(5):1537–1545

    Article  Google Scholar 

  164. Yang G, Pidko EA, Hensen EJM (2013) Structure, stability, and Lewis acidity of mono and double Ti, Zr, and Sn framework substitutions in BEA zeolites: a periodic density functional theory study. J Phys Chem C 117(8):3976–3986

    Article  Google Scholar 

  165. Lew CM, Rajabbeigi N, Tsapatsis M (2012) Tin-containing zeolite for the isomerization of cellulosic sugars. Microporous Mesoporous Mater 153:55–58

    Article  Google Scholar 

  166. Osmundsen CM, Holm MS, Dahl S et al (2012) Tin-containing silicates: structure–activity relations. Proc R Soc A 468:2000–2016

    Article  Google Scholar 

  167. Bai P, Siepmann JI, Deem MW (2013) Adsorption of glucose into zeolite beta from aqueous solution. AIChE J 59(9):3523–3529

    Article  Google Scholar 

  168. Cheng L, Curtiss LA, Assary RS et al (2011) Adsorption and diffusion of fructose in zeolite HZSM-5: selection of models and methods for computational studies. J Phys Chem C 115(44):21785–21790

    Article  Google Scholar 

  169. Jae J, Tompsett GA, Foster AJ et al (2011) Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J Catal 279(2):257–268

    Article  Google Scholar 

  170. Assary RS, Curtiss LA (2012) Comparison of sugar molecule decomposition through glucose and fructose: a high-level quantum chemical study. Energy Fuel 26(2):1344–1352

    Article  Google Scholar 

  171. Sasaki M, Goto K, Tajima K et al (2002) Rapid and selective retro-aldol condensation of glucose to glycolaldehyde in supercritical water. Green Chem 4(3):285–287

    Article  Google Scholar 

  172. Sasaki M, Furukawa M, Minami K et al (2002) Kinetics and mechanism of cellobiose hydrolysis and retro-aldol condensation in subcritical and supercritical water. Ind Eng Chem Res 41(26):6642–6649

    Article  Google Scholar 

  173. Wang Y, Deng W, Wang B et al (2013) Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water. Nat Commun 4:2141

    Google Scholar 

  174. Deng W, Zhang Q, Wang Y (2014) Catalytic transformations of cellulose and cellulose-derived carbohydrates into organic acids. Catal Today 234:31–41

    Article  Google Scholar 

  175. Horvat J, Klaic B, Metelko B et al (1985) Mechanism of levulinic acid formation. Tetrahedron Lett 26(17):2111–2114

    Article  Google Scholar 

  176. Horvat J, Klaic B, Metelko B et al (1986) Mechanism of levulinic acid formation in acid-catalyzed hydrolysis Of 2-hydroxymethylfurane and 5-hydroxymethylfurane-2-carbaldehyde. Croat Chem Acta 59(2):429–438

    Google Scholar 

  177. Patil SKR, Lund CRF (2011) Formation and growth of humins via aldol addition and condensation during acid-catalyzed conversion of 5-hydroxymethylfurfural. Energy Fuel 25(10):4745–4755

    Article  Google Scholar 

  178. Patil SKR, Heltzel J, Lund CRF (2012) Comparison of structural features of humins formed catalytically from glucose, fructose, and 5-hydroxymethylfurfuraldehyde. Energy Fuel 26(8):5281–5293

    Article  Google Scholar 

  179. van Zandvoort I, Wang Y, Rasrendra CB et al (2013) Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions. ChemSusChem 6(9):1745–1758

    Article  Google Scholar 

  180. Nikbin N, Caratzoulas S, Vlachos DG (2012) A first principles-based microkinetic model for the conversion of fructose to 5-hydroxymethylfurfural. ChemCatChem 4(4):504–511

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the European Union FP7 NMP project Novel Cheap and Abundant Materials for Catalytic Biomass Conversion (NOVACAM; FP7-NMP-2013-EU-Japan-604319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny A. Pidko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Li, G., Hensen, E.J.M., Pidko, E.A. (2016). Computational Chemistry of Catalytic Biomass Conversion. In: Schlaf, M., Zhang, Z. (eds) Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion II. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-287-769-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-769-7_4

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-768-0

  • Online ISBN: 978-981-287-769-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics