Skip to main content

Differentiation of the Coordination Chemistry of Metal Chlorides in Catalytic Conversion of Glucose in Ionic Liquids

  • Chapter
Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion I

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 1280 Accesses

Abstract

Catalytic aldose isomerization to ketose is an important reaction for the utilization of cellulosic biomass. However, a fundamental understanding and knowledge base involved in this reaction remains lacking in the literature. In this chapter, we provide a focused review of the most studied solvent-based catalytic system involving metal halides for glucose isomerization to fructose and further to 5-hydroxymethhylfurfral (5-HMF). Results from studies by different physical techniques are critically reviewed. A differentiation of the coordination chemistry of different metal chlorides obtained by various physical techniques is established to rationalize the drastically different catalytic pathways by the metal chloride catalysts. The performance of metal chloride catalysts for the isomerization of aldose to ketose is found to correlate with their coordination chemistry. Solvents play an important role in determining the coordination structures for the metal ions, which critically affect the catalysis of the metal chloride precursors. Undesired side products are related to the reaction pathways corresponding to the nature of the coordination of metal ions with different oxygen sources in the substrates and the products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Richard M, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484

    Article  CAS  Google Scholar 

  2. Mamman AS, Lee J-M, Kim Y-C, Hwang IT, Park N-J, Hwang YK, Chang J-S, Hwang J-S (2008) Furfural: hemicellulose/xylose derived biochemical. Biofuels Bioprod Biorefin 2(5):438–454. doi:10.1002/bbb.95

    Article  CAS  Google Scholar 

  3. Tong X, Ma Y, Li Y (2010) Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Appl Catal Gen 385(1–2):1–13. doi:10.1016/j.apcata.2010.06.049

    Article  CAS  Google Scholar 

  4. Zhang ZC (2013) Catalytic transformation of carbohydrates and lignin in ionic liquids. Wiley Interdiscip Rev Energy Environ 2(6):655–672. doi:10.1002/wene.67

    Article  CAS  Google Scholar 

  5. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107(6):2411–2502. doi:10.1021/cr050989d

    Article  CAS  Google Scholar 

  6. Grande PM, Bergs C, Dominguez de Maria P (2012) Chemo-enzymatic conversion of glucose into 5-hydroxymethylfurfural in seawater. ChemSusChem 5(7):1203–1206. doi:10.1002/cssc.201200065

    Article  CAS  Google Scholar 

  7. Hernández M, Lima E, Guzmán A, Vera M, Novelo O, Lara V (2014) A small change in the surface polarity of cellulose causes a significant improvement in its conversion to glucose and subsequent catalytic oxidation. Appl Catal Environ 144:528–537. doi:10.1016/j.apcatb.2013.07.061

    Article  Google Scholar 

  8. Yang G, Pidko EA, Hensen EJ (2013) The mechanism of glucose isomerization to fructose over Sn-BEA zeolite: a periodic density functional theory study. ChemSusChem 6(9):1688–1696. doi:10.1002/cssc.201300342

    Article  CAS  Google Scholar 

  9. Zhang J, Cao Y, Li H, Ma X (2014) Kinetic studies on chromium-catalyzed conversion of glucose into 5-hydroxymethylfurfural in alkylimidazolium chloride ionic liquid. Chem Eng J 237:55–61. doi:10.1016/j.cej.2013.10.007

    Article  CAS  Google Scholar 

  10. He J, Zhang Y, Chen EY (2013) Chromium(0) nanoparticles as effective catalyst for the conversion of glucose into 5-hydroxymethylfurfural. ChemSusChem 6(1):61–64. doi:10.1002/cssc.201200795

    Article  CAS  Google Scholar 

  11. Lewkowski J (2001) Synthesis, chemistry and applications of 5-hydroxymethylfurfural and its derivatives. ARKIVOC i:17

    Google Scholar 

  12. van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113(3):1499–1597. doi:10.1021/cr300182k

    Article  Google Scholar 

  13. Kuster BFM (1990) 5-Hydroxymethylfurfural (HMF). A review focussing on its manufacture. Starch 42:314

    Article  CAS  Google Scholar 

  14. Ståhlberg T, Fu W, Woodley JM, Riisager A (2011) Synthesis of 5-(Hydroxymethyl)furfural in ionic liquids: paving the way to renewable chemicals. ChemSusChem 4(4):451–458. doi:10.1002/cssc.201000374

    Article  Google Scholar 

  15. Choudhary V, Mushrif SH, Ho C, Anderko A, Nikolakis V, Marinkovic NS, Frenkel AI, Sandler SI, Vlachos DG (2013) Insights into the interplay of Lewis and Bronsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media. J Am Chem Soc 135(10):3997–4006. doi:10.1021/ja3122763

    Article  CAS  Google Scholar 

  16. Ståhlberg T, Sørensen MG, Riisager A (2010) Direct conversion of glucose to 5-(hydroxymethyl)furfural in ionic liquids with lanthanide catalysts. Green Chem 12(2):321. doi:10.1039/b916354a

    Article  Google Scholar 

  17. Hu S, Zhang Z, Song J, Zhou Y, Han B (2009) Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid. Green Chem 11(11):1746. doi:10.1039/b914601f

    Article  CAS  Google Scholar 

  18. Kim B, Jeong J, Lee D, Kim S, Yoon H-J, Lee Y-S, Cho JK (2011) Direct transformation of cellulose into 5-hydroxymethyl-2-furfural using a combination of metal chlorides in imidazolium ionic liquid. Green Chem 13(6):1503. doi:10.1039/c1gc15152e

    Article  CAS  Google Scholar 

  19. Nikolla E, Román-Leshkov Y, Moliner M, Davis ME (2011) “One-Pot” synthesis of 5-(hydroxymethyl)furfural from carbohydrates using tin-beta zeolite. ACS Catal 1(4):408–410. doi:10.1021/cs2000544

    Article  CAS  Google Scholar 

  20. Kimura H, Nakahara M, Matubayasi N (2011) In situ kinetic study on hydrothermal transformation of D-glucose into 5-hydroxymethylfurfural through D-fructose with 13C NMR. J Phys Chem A 115(48):14013–14021. doi:10.1021/jp206355e

    Article  CAS  Google Scholar 

  21. Antal MJ Jr, Mok WSL, Richards GN (1990) Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose. Carbohydr Res 199(1):91–109. doi:10.1016/0008-6215(90)84096-D

    Article  CAS  Google Scholar 

  22. Poncini L, Richards GN (1980) Thermolysis of sucrose in dimethyl sulphoxide solution. Carbohydr Res 87(2):209–217. doi:10.1016/S0008-6215(00)85207-6

    Article  CAS  Google Scholar 

  23. Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316(5831):1597–1600. doi:10.1126/science.1141199

    Article  CAS  Google Scholar 

  24. Dais P, Perlin AS (1985) Stabilization of the β-furanose form, and kinetics of the automerization of d-fructose in dimethyl sulfoxide. Carbohydr Res 136:215–223. doi:10.1016/0008-6215(85)85198-3

    Article  CAS  Google Scholar 

  25. Rigal L, Gaset A, Gorrichon JP (1981) Selective conversion of D-fructose to 5-hydroxymethyl-2-furancarboxaldehyde using a water-solvent-ion-exchange resin triphasic system. Ind Eng Chem Prod Res Dev 20(4):719–721. doi:10.1021/i300004a025

    Article  CAS  Google Scholar 

  26. Román-Leshkov Y, Chheda JN, Dumesic JA (2006) Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312(5782):1933–1937. doi:10.1126/science.1126337

    Article  Google Scholar 

  27. Mercadier D, Rigal L, Gaset A, Gorrichon J-P (1981) Synthesis of 5-hydroxymethyl-2-furancarboxaldehyde catalysed by cationic exchange resins. Part 3. Kinetic approach of the D-fructose dehydration. J Chem Technol Biotechnol 31(1):503–508. doi:10.1002/jctb.503310167

    Article  CAS  Google Scholar 

  28. Kuster BFM, Laurens J (1977) Preparation of 5-hydroxymethylfurfural part II. Dehydration of fructose in a tube reactor using polyethyleneglycol as solvent. Starch/Stärke 29(5):172–176. doi:10.1002/star.19770290507

    Google Scholar 

  29. Jia S, Liu K, Xu Z, Yan P, Xu W, Liu X, Zhang ZC (2014) Reaction media dominated product selectivity in the isomerization of glucose by chromium trichloride: from aqueous to non-aqueous systems. Catal Today 234:83–90. doi:10.1016/j.cattod.2014.02.038

    Article  CAS  Google Scholar 

  30. Hu L, Sun Y, Lin L, Liu S (2012) Catalytic conversion of glucose into 5-hydroxymethylfurfural using double catalysts in ionic liquid. J Taiwan Inst Chem Eng 43(5):718–723. doi:10.1016/j.jtice.2012.04.001

    Article  CAS  Google Scholar 

  31. Rajabbeigi N, Torres AI, Lew CM, Elyassi B, Ren L, Wang Z, Je Cho H, Fan W, Daoutidis P, Tsapatsis M (2014) On the kinetics of the isomerization of glucose to fructose using Sn-Beta. Chem Eng Sci 116:235–242. doi:10.1016/j.ces.2014.04.031

    Article  CAS  Google Scholar 

  32. Despax S, Estrine B, Hoffmann N, Le Bras J, Marinkovic S, Muzart J (2013) Isomerization of d-glucose into d-fructose with a heterogeneous catalyst in organic solvents. Catal Commun 39:35–38. doi:10.1016/j.catcom.2013.05.004

    Article  CAS  Google Scholar 

  33. Li C, Zhao ZK, Wang A, Zheng M, Zhang T (2010) Production of 5-hydroxymethylfurfural in ionic liquids under high fructose concentration conditions. Carbohydr Res 345(13):1846–1850. doi:10.1016/j.carres.2010.07.003

    Article  CAS  Google Scholar 

  34. Qi XH, Watanabe M, Aida TM, Smith RL Jr (2009) Efficient process for conversion of fructose to 5-hydroxymethylfurfural with ionic liquids. Green Chem 11(9):1327–1331. doi:10.1039/B905975J

    Article  CAS  Google Scholar 

  35. Binder JB, Cefali AV, Blank JJ, Raines RT (2010) Mechanistic insights on the conversion of sugars into 5-hydroxymethylfurfural. Energy Environ Sci 3(6):765. doi:10.1039/b923961h

    Article  CAS  Google Scholar 

  36. Han JK, Lee KW, Eui LC (2000) Proton dynamics in SnCl4·5H2O. J Kor Phys Soc 37(5):L487–L489

    CAS  Google Scholar 

  37. Guan J, Cao Q, Guo X, Mu X (2011) The mechanism of glucose conversion to 5-hydroxymethylfurfural catalyzed by metal chlorides in ionic liquid: a theoretical study. Comput Theor Chem 963(2–3):453–462. doi:10.1016/j.comptc.2010.11.012

    Article  CAS  Google Scholar 

  38. van Putten RJ, Soetedjo JN, Pidko EA, van der Waal JC, Hensen EJ, de Jong E, Heeres HJ (2013) Dehydration of different ketoses and aldoses to 5-hydroxymethylfurfural. ChemSusChem 6(9):1681–1687. doi:10.1002/cssc.201300345

    Article  Google Scholar 

  39. Loerbroks C, van Rijn J, Ruby MP, Tong Q, Schuth F, Thiel W (2014) Reactivity of metal catalysts in glucose-fructose conversion. Chemistry 20(38):12298–12309. doi:10.1002/chem.201402437

    Article  CAS  Google Scholar 

  40. Pidko EA, Degirmenci V, van Santen RA, Hensen EJ (2010) Glucose activation by transient Cr2+ dimers. Angew Chem 49(14):2530–2534. doi:10.1002/anie.201000250

    Article  CAS  Google Scholar 

  41. Zhang Y, Pidko EA, Hensen EJ (2011) Molecular aspects of glucose dehydration by chromium chlorides in ionic liquids. Chemistry 17(19):5281–5288. doi:10.1002/chem.201003645

    Article  CAS  Google Scholar 

  42. Pidko EA, Degirmenci V, Hensen EJM (2012) On the mechanism of Lewis acid catalyzed glucose transformations in ionic liquids. ChemCatChem 4(9):1263–1271. doi:10.1002/cctc.201200111

    Article  CAS  Google Scholar 

  43. Pidko EA, Degirmenci V, van Santen RA, Hensen EJ (2010) Coordination properties of ionic liquid-mediated chromium(II) and copper(II) chlorides and their complexes with glucose. Inorg Chem 49(21):10081–10091. doi:10.1021/ic101402r

    Article  CAS  Google Scholar 

  44. Yang G, Pidko EA, Hensen EJM (2012) Mechanism of Brønsted acid-catalyzed conversion of carbohydrates. J Catal 295:122–132. doi:10.1016/j.jcat.2012.08.002

    Article  CAS  Google Scholar 

  45. Amir RM, Anjum FM, Khan MI, Khan MR, Pasha I, Nadeem M (2013) Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties. J Food Sci Technol 50(5):1018–1023. doi:10.1007/s13197-011-0424-y

    Article  CAS  Google Scholar 

  46. Cozzolino D, Roumeliotis S, Eglinton J (2014) Evaluation of the use of attenuated total reflectance mid infrared spectroscopy to determine fatty acids in intact seeds of barley (Hordeum vulgare). LWT Food Sci Technol 56(2):478–483. doi:10.1016/j.lwt.2013.11.019

    Article  CAS  Google Scholar 

  47. Lejeune J, Brubach JB, Roy P, Bleuzen A (2014) Application of the infrared spectroscopy to the structural study of Prussian blue analogues. C R Chim 17(6):534–540. doi:10.1016/j.crci.2014.01.017

    Article  CAS  Google Scholar 

  48. Nasrazadani S, Springfield T (2013) Application of Fourier transform infrared spectroscopy in cement Alkali quantification. Mater Struct 47(10):1607–1615. doi:10.1617/s11527-013-0140-3

    Article  Google Scholar 

  49. Zhu ZY, Zhang C, Liu F, Kong WW, He Y (2014) Producing area identification of Letinus edodes using mid-infrared spectroscopy. Spectrosc Spectr Anal 34(3):664–667. doi:10.3964/j.issn.1000-0593(2014)03-0664-04

    CAS  Google Scholar 

  50. Ruthenburg TC, Perlin PC, Liu V, McDade CE, Dillner AM (2014) Determination of organic matter and organic matter to organic carbon ratios by infrared spectroscopy with application to selected sites in the IMPROVE network. Atmos Environ 86:47–57. doi:10.1016/j.atmosenv.2013.12.034

    Article  CAS  Google Scholar 

  51. Kendix EL, Prati S, Joseph E, Sciutto G, Mazzeo R (2009) ATR and transmission analysis of pigments by means of far infrared spectroscopy. Anal Bioanal Chem 394(4):1023–1032. doi:10.1007/s00216-009-2691-2

    Article  CAS  Google Scholar 

  52. Vahur S, Teearu A, Leito I (2010) ATR-FT-IR spectroscopy in the region of 550–230 cm−1 for identification of inorganic pigments. Spectrochim Acta A Mol Biomol Spectrosc 75(3):1061–1072. doi:10.1016/j.saa.2009.12.056

    Article  Google Scholar 

  53. Kendix E, Moscardi G, Mazzeo R, Baraldi P, Prati S, Joseph E, Capelli S (2008) Far infrared and Raman spectroscopy analysis of inorganic pigments. J Raman Spectrosc 39(8):1104–1112. doi:10.1002/jrs.1956

    Article  CAS  Google Scholar 

  54. Zhang M, Moxon T (2014) Infrared absorption spectroscopy of SiO2-moganite. Am Mineral 99(4):671–680. doi:10.2138/am.2014.4589

    Article  CAS  Google Scholar 

  55. Li HX, Xu WJ, Huang TY, Jia SY, Xu ZW, Yan PF, Liu XM, Zhang ZC (2014) Distinctive aldose isomerization characteristics and the coordination chemistry of metal chlorides in 1-Butyl-3-methylimidazolium chloride. ACS Catal 4(12):4446–4454. doi:10.1021/cs5012684

    Article  CAS  Google Scholar 

  56. Brusentsova TN, Peale RE, Maukonen D, Harlow GE, Boesenberg JS, Ebel D (2010) Far infrared spectroscopy of carbonate minerals. Am Mineral 95(10):1515–1522. doi:10.2138/am.2010.3380

    Article  CAS  Google Scholar 

  57. Kidchob T, Malfatti L, Marongiu D, Enzo S, Innocenzi P (2009) Formation of cerium titanate, CeTi2O6, in sol-gel films studied by XRD and FAR infrared spectroscopy. J Sol Gel Sci Technol 52(3):356–361. doi:10.1007/s10971-009-2047-6

    Article  CAS  Google Scholar 

  58. Falconer RJ, Zakaria HA, Fan YY, Bradley AP, Middelberg APJ (2010) Far-infrared spectroscopy of protein higher-order structures. Appl Spectrosc 64(11):1259–1264. doi:10.1366/000370210793335025

    Article  CAS  Google Scholar 

  59. Zhang F, Zhu X, Ding J, Qi Z, Wang M, Sun S, Bao J, Gao C (2014) Mechanism study of photocatalytic degradation of gaseous toluene on TiO2 with weak-bond adsorption analysis using in situ far infrared spectroscopy. Catal Lett 144(6):995–1000. doi:10.1007/s10562-014-1213-9

    Article  CAS  Google Scholar 

  60. Withayachumnankul W, Fischer BM, Abbott D (2008) Numerical removal of water vapour effects from terahertz time-domain spectroscopy measurements. Proc R Soc A Math Phys 464(2097):2435–2456. doi:10.1098/rspa.2007.0294

    Article  CAS  Google Scholar 

  61. Bernath PF (2002) The spectroscopy of water vapour: experiment, theory and applications. Phys Chem Chem Phys 4(9):1501–1509. doi:10.1039/b200372d

    Article  CAS  Google Scholar 

  62. Eysel HH (1972) Hexamminmetall(III)-hexachlorochromate(III): Darstellung, Kristallgitter und Spektren. Z Anorg Allg Chem 390(2):210–216. doi:10.1002/zaac.19723900209

    Article  CAS  Google Scholar 

  63. Fumino K, Fossog V, Stange P, Wittler K, Polet W, Hempelmann R, Ludwig R (2014) Ion pairing in protic ionic liquids probed by far-infrared spectroscopy: effects of solvent polarity and temperature. ChemPhysChem 15(12):2604–2609. doi:10.1002/cphc.201402205

    Article  CAS  Google Scholar 

  64. Ricci RW, Ditzler MA, Nestor LP (1994) Discovering the Beer-Lambert law. J Chem Educ 71(11):983–985

    Article  CAS  Google Scholar 

  65. Commoner B, Lipkin D (1949) The application of the Beer-Lambert law to optically anisotropic systems. Science 110(2845):41–43. doi:10.1126/science.110.2845.41-a

    Article  CAS  Google Scholar 

  66. Avery JS, Burbridge CD, Goodgame DML (1968) Raman spectra of tetrahalo-anions of FeIII, MnII, FeII, CuII and ZnII. Spectrochim Acta A Mol Spectrosc 24(11):1726. doi:10.1016/0584-8539(68)80227-2

    Article  Google Scholar 

  67. Landis CR, Weinhold F (2007) Valence and extra-valence orbitals in main group and transition metal bonding. J Comput Chem 28(1):198–203. doi:10.1002/jcc.20492

    Article  CAS  Google Scholar 

  68. Schläfer HL, Gliemann G (1969) Basic principles of ligand field theory. Wiley Interscience, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Conrad Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Li, H., Zhang, Z.C. (2016). Differentiation of the Coordination Chemistry of Metal Chlorides in Catalytic Conversion of Glucose in Ionic Liquids. In: Schlaf, M., Zhang, Z. (eds) Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion I. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-287-688-1_4

Download citation

Publish with us

Policies and ethics