Skip to main content

Presentation of the Multi-Phase CFD Solver NEPTUNE_CFD

  • Chapter
  • First Online:
Advances in Hydroinformatics

Part of the book series: Springer Water ((SPWA))

  • 1310 Accesses

Abstract

The NEPTUNE project constitutes the thermal-hydraulic part of the long-term EDF-CEA-AREVA-IRSN joint research and development program for the next generation of nuclear reactor simulation tools. The project aims at developing high modeling capabilities for advanced two-phase flow thermal-hydraulics covering the whole range of modeling scales. The CFD scale for flow description is covered with NEPTUNE_CFD code. The multiphase approach, developed in the NEPTUNE_CFD code for nuclear engineering, is based on separate Eulerian transport equations for mass, momentum, energy, and turbulent quantities of the different fluids, which are coupled through inter-phase transfer terms. This model is primarily dedicated to the simulation of multiphase flows containing one continuous fluid always present, which carries dispersed fluids present in the form of bubbles, droplets, particles, whose dimensions are much smaller than the spatial resolution length of the model. The simulation of all range of multiphase flow situation, such as dispersed and liquid/gas stratified (separated) flows, which can be encountered in nuclear PWR circuits and pipes under nominal or incidental conditions, remain challenging cases for multiphase volume averaged flow models. The paper deals with a short presentation of NEPTUNE_CFD model, dedicated to incompressible, weakly compressible, unsteady, and turbulent 3D two-phase flow computations. Some modeling strategies will be detailed through the examples of two validations of semi-integral cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

g:

Gravitational acceleration (m.s−2)

I′:

Interfacial momentum transfer (kg.m.s−2)

P:

Pressure (Pascal)

U:

Mean velocity (m.s−2)

T:

Temperature (Kelvin)

α:

Volume fraction (m3/m3)

μ:

Dynamic viscosity (kg.m−1.s−1)

Σ:

Turbulent constraint tensor

Γ:

Mass transfer term (kg.m−3.s−1)

Π:

Heat transfer term (J.m−3.s−1)

References

  1. Guelfi, A., Bestion, D., Boucker, M., Boudier, P., Fillion, P., Grandotto, M., et al. (2007). NEPTUNE—A new software platform for advanced nuclear thermal-hydraulics. Nuclear Engineering and Design, 156, 281–324.

    Google Scholar 

  2. Ishii, M., & Hibiki, T. (2006). Thermo-fluid dynamics of two phase flows. New York: Springer Science Business Media.

    Book  Google Scholar 

  3. Simonin, O. (2000). Statistical and continuum modelling of turbulent reactive particulate flows. Theoretical and Experimental Modelling of Particulate Flows. Lecture Series 2000–06, Von Karman Institute for Fluid Dynamics, Rhode Saint Genèse, Belgium.

    Google Scholar 

  4. Méchitoua, N., Boucker., M., Lavieville, J., Hérard, J.M., Pigny, S., & Serre, G. (2003). An unstructured FV solver for two phase water/vapor flows modelling based on an elliptic oriented fractional step method, NURETH’10, Seoul, October 5–9, 2003.

    Google Scholar 

  5. Tobita, Y., Kondo, S., Yamano, K., Morita, W., Maschek, P., Coste, P., & Cadiou, T. (2006). The development of SIMMER-III, an advanced computer program for LMFR safety analysis, and its application to sodium experiments. Nuclear Technology, 153, 245–255.

    Google Scholar 

  6. Pigny, S., Boucker, M., Laviéville, J., & Méchitoua, N. (2004). Benchmarks for the NEPTUNE 3D code. In Proceedings International Conference on Multiphase Flows, Yokohama, Japan, May 31–June 03, 2004.

    Google Scholar 

  7. Coste, P., Pouvreau, J., Morel, C., Laviéville, J., Boucker, M., & Martin, A. (2007) Modeling turbulence and friction around a large interface in a three dimensional-two velocity Eulerian code. NURETH’12, Pittsburgh, Pennsylvania, USA, September 30–October 4 (2007).

    Google Scholar 

  8. Lavieville, J., & Coste, P. (2008). Numerical modeling of liquid-gas stratified flows using two phase Eulerian approach. In Proceeding of 5th International Symposium on Finite Volumes for Complex Applications, Aussois, France, June 08–13, 2008.

    Google Scholar 

  9. Mimouni, S., Denèfle, R., Fléau, S., & Vincent, S. (2014). Multifield Approach and Interface Locating Method for Two Phase Flows in Nuclear Power Plant. SIMHYDRO2014, Sophia Antipolis, France, June 11–13, 2014.

    Google Scholar 

  10. Cicéro, G. M., Boursiquot, D., Brémont, O., & Menon, J. M. (2014). Projet Maîtrise de la Débitance des Ouvrages—Synthèse des essais sur modèle réduit de vannes segment sur seuil Creager. Internal Report EDF R&D LNHE HP-75/04/014/A.

    Google Scholar 

  11. Mechitoua, N., Jennesson, B., Schneider, J. P., Luck, M., & Valette, E. (2010). Assessment of NEPTUNE_CFD code for some free surface flows interesting fluvial hydraulic. ICMF 2010, Tampa, Florida, May 30–June 4, 2010.

    Google Scholar 

  12. Guichard, J., & Thomas, B. (1992). Compte rendu des Essais Diphasiques VATICAN-1. Note EDF R&D HT-33/92.09.A.

    Google Scholar 

  13. Guelfi, A., & Pitot, S. NPR : Note de principe THYC Version 4.1, Partie 1 : Modélisation. Note EDF R&D HI-84/03/020/A.

    Google Scholar 

  14. Mechitoua, N. (2006). Vit Evaluation de NEPTUNE_CFD sur une configuration d’écoulements en faisceau de tubes. Note EDF R&D H-I81-2006-04525-FR.

    Google Scholar 

Download references

Acknowledgments

The presented computations have been performed in the framework of EDF R&D projects, with the financial support of EDF (Electricite de France).

The authors are grateful to the NEPTUNE_CFD development team for their support to the use of the code and help for implementing specific models.

In the frame of the NEPTUNE project, NEPTUNE_CFD code is jointly developed by EDF (Electricite de France) and CEA (Commissariat à l’Energie Atomique). The project is also funded by AREVA-NP and IRSN (Intstitut de Radioprotection et de Sûreté Nucléaire).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namane Mechitoua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Mechitoua, N., Guingo, M., Montarnal, P. (2016). Presentation of the Multi-Phase CFD Solver NEPTUNE_CFD. In: Gourbesville, P., Cunge, J., Caignaert, G. (eds) Advances in Hydroinformatics. Springer Water. Springer, Singapore. https://doi.org/10.1007/978-981-287-615-7_32

Download citation

Publish with us

Policies and ethics