Skip to main content

Numerical Scheme for a Viscous Shallow Water System Including New Friction Laws of Second Order: Validation and Application

  • Chapter
  • First Online:
Advances in Hydroinformatics

Part of the book series: Springer Water ((SPWA))

  • 1248 Accesses

Abstract

In this work, we are interested in the derivation of a new shallow water model with a diffusion source term. Analytical solutions for steady flow regimes are first presented to validate a numerical method designed to solve this new model. Then this model is applied on real data and seems to give better results than the classical shallow water system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Saint-Venant, A. J.-C. (1871). Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l’introduction des marées dans leur lit. Comptes Rendus de l’Académie des Sciences, 73, 147–154.

    MATH  Google Scholar 

  2. Delestre, O. (2010). Simulation du ruissellement d’eau de pluie sur des surfaces agricoles. PhD thesis University of Orléans, in french. http://tel.archives-ouvertes.fr/INSMI/tel-00531377/fr.

  3. Delestre, O., Cordier, S., Darboux, F., Du, M., James, F., & Laguerre, C., et al. (2014). FullSWOF: A software for overland flow simulation. In P.Gourbesville, J. Cunge, & G. Caignaert, (Eds.), Advances in Hydroinformatics, Springer Hydrogeology (pp. 221–231). Springer: Singapore.

    Google Scholar 

  4. Esteves, M., Faucher, X., Galle, S., & Vauclin, M. (2000). Overland flow and infiltration modelling for small plots during unsteady rain: numerical results versus observed values. Journal of Hydrology, 228, 265–282.

    Article  Google Scholar 

  5. Tatard, L., Planchon, O., Wainwright, J., Nord, G., Favis-Mortlock, D., Silvera, N., et al. (2008). Measurement and modelling of high-resolution flow-velocity data under simulated rainfall on a low-slope sandy soil. Journal of Hydrology, 348(1–2), 1–12.

    Article  Google Scholar 

  6. Goutal, N., & Maurel, F. (2002). A finite volume solver for 1D shallow-water equations applied to an actual river. International Journal for Numerical Methods in Fluids, 38, 1–19.

    Article  MATH  Google Scholar 

  7. Caleffi, V., Valiani, A., & Zanni, A. (2003). Finite volume method for simulating extreme flood events in natural flood events in natural channels. Journal of Hydraulic Research, 41(2), 167–177.

    Article  Google Scholar 

  8. Alcrudo, F., & Gil, E. (1999). The Malpasset dam break case study. Proceedings of the 4th CADAM Workshop, Zaragoza (pp. 95–109).

    Google Scholar 

  9. Valiani, A., Caleffi, V., & Zanni, A. (2002). Case study: Malpasset dam-break simulation using a two-dimensional finite volume methods. Journal of Hydraulic Engineering, 128(5), 460–472.

    Article  Google Scholar 

  10. Popinet, S. (2011). Quadtree-adaptive tsunami modelling. Ocean Dynamics, 61(9), 1261–1285.

    Article  Google Scholar 

  11. Gerbeau, J.-F., & Perthame, B. (2001). Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation. Discrete and Continuous Dynamical Systems---Series S, 1, 89–102.

    Article  MathSciNet  MATH  Google Scholar 

  12. Marche, F. (2007). Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. European Journal of Mechanics B/Fluids, 26, 49–63.

    Article  MathSciNet  MATH  Google Scholar 

  13. MacDonald, I., Baines, M. J., Nichols, N. K., & Samuels, P. G. (1997). Journal of Hydraulic Engineering, 123, 1041–1045.

    Article  Google Scholar 

  14. Chow, V. T. (1959). Open-channel hydraulics. New York: McGraw-Hill.

    Google Scholar 

  15. Delestre, O., Darboux, F., James, F., Lucas, C., Laguerre, C., & Cordier, S. (Submitted). FullSWOF: A free software package for the simulation of shallow water flows. arxiv.org/abs/1401.4125.

    Google Scholar 

  16. Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., & Perthame, B. (2004). A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. Journal of Scientific Computing, 25(6), 2050–2065.

    Article  MathSciNet  MATH  Google Scholar 

  17. Bouchut, F. (2004). Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources. Frontiers in Mathematics. Basel: Birkhauser.

    Google Scholar 

  18. Bristeau, M.-O., & Coussin, B. (2001). Boundary conditions for the shallow water equations solved by kinetic schemes. Inria report RR-4282.

    Google Scholar 

  19. Fiedler, R. F., & Ramirez, J. A. (2000). A numerical method for simulating discontinuous shallow flow over an infiltrating surface. International Journal for Numerical Methods in Fluids, 32, 219–240.

    Article  MATH  Google Scholar 

  20. Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J., & Dongarra, J., et al. (1999). LAPACK Users’ guide (3rd ed.). Philadelphia: Society for Industrial and Applied Mathematics.

    Google Scholar 

  21. Delestre, O., Lucas, C., Ksinant, P.-A., Darboux, F., Laguerre, C., Vo, T. N. T., et al. (2013). SWASHES: A compilation of Shallow-Water analytic solutions for hydraulic and environmental studies. International Journal for Numerical Methods in Fluids, 72, 269–300. doi:10.1002/fld.3741.

    Article  MathSciNet  Google Scholar 

  22. Delestre, O., Lucas, C., Ksinant, P.-A., Darboux, F., Laguerre, C., & James, F., et al. (2014). SWASHES: A library for benchmarking in hydraulic. In p. Gourbesville, J. Cunge & G. Caignaert, (Eds.), Advances in Hydroinformatics, Springer Hydrogeology (pp. 233–243). Springer: Singapore.

    Google Scholar 

  23. Legout, C., Darboux, F., Nédélec, Y., Hauet, A., Esteves, M., Renaux, B., et al. (2012). High spatial resolution mapping of surface velocities and depths for shallow overland flow. Earth Surface Processes and Landforms, 37(9), 984–993. doi:10.1002/esp.3220.

    Article  Google Scholar 

Download references

Acknowledgements

The authors whish to thanks the ANR-11-JS01-006-01 project CoToCoLa (Contemporary Topics on Conservation Laws), Carine Lucas for her advices and Frédéric Darboux for the data used in Sect. 4.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Razafison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Delestre, O., Razafison, U. (2016). Numerical Scheme for a Viscous Shallow Water System Including New Friction Laws of Second Order: Validation and Application. In: Gourbesville, P., Cunge, J., Caignaert, G. (eds) Advances in Hydroinformatics. Springer Water. Springer, Singapore. https://doi.org/10.1007/978-981-287-615-7_16

Download citation

Publish with us

Policies and ethics