Skip to main content

Simulation and Modeling of Synthetic Jets

  • Chapter
  • First Online:
Vortex Rings and Jets

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 111))

Abstract

This chapter gives a comprehensive review on the state-of-the-art numerical simulation and modeling of synthetic jet (SJ), an oscillatory, zero-net-mass-flux jet that has great potential in flow control. The numerical techniques dealing with the SJ oscillation, laminar-turbulent transition, and turbulence in quiescent conditions are introduced first. From the CFD simulations, the flow physics associated with SJs issuing from offices of different shapes, mainly high-aspect-ratio rectangular slots and low-aspect-ratio rectangular or circular orifices, are then summarized and discussed. Low-dimensional models that are used for fast prediction of the performance of SJ actuators in quiescent conditions are also introduced. The review then focuses on the CFD simulations of SJ interaction with cross flows, including both attached and separated flows. Different numerical methods are introduced and compared. The flow physics associated with SJs interacting with laminar boundary layers, turbulent boundary layers, different types of separated flows, as well as flows around an airfoil are also summarized and discussed. In the end, research about the coupling of CFD simulation or low-dimensional modeling with optimization and control algorithms for SJ-based flow control is briefly reviewed. We hope this chapter provides a better picture of the state-of-the-art numerical simulation and modeling of SJs for the flow separation control applications and future researchers in this field can benefit from reading it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adya, S., Han, D., & Hosder, S. (2010). Uncertainty quantification integrated to the CFD modeling of synthetic jet actuators. AIAA Paper 2010-4411.

    Google Scholar 

  2. Amitay, M., Kibens, V., Parekh, D., & Glezer, A. (1999). The dynamics of flow reattachment over a thick airfoil controlled by synthetic jet actuators. AIAA Paper 1999-1001.

    Google Scholar 

  3. Amitay, M., Smith, D. R., Kibens, V., Parekh, D. E., & Glezer, A. (2001). Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators. AIAA Journal, 39, 361–370.

    Article  Google Scholar 

  4. Aram, E., Mittal, R., Griffin, J., & Cattafesta, L. (2010). Towards effective ZNMF jet based control of a canonical separated flow. AIAA Paper 2010-4705.

    Google Scholar 

  5. Biedron, R., Vatsa, V., & Atkins, H. (2005). Simulation of unsteady flows using an unstructured Navier-Stokes solver on moving and stationary grids. AIAA Paper 2005-5093.

    Google Scholar 

  6. Capizzano, F., Catalano, P., Marongiu, C., & Vitagliano, P. L. (2005). URANS modelling of turbulent flows controlled by synthetic jets. AIAA Paper 2005-5015.

    Google Scholar 

  7. Carpy, S., & Manceau, R. (2006). Turbulence modelling of statistically periodic flows: synthetic jet into quiescent air. International Journal of Heat and Fluid Flow, 27(5), 756–767.

    Article  Google Scholar 

  8. Cater, J. E., & Soria, J. (2002). The evolution of round zero-net-mass-flux jets. Journal of Fluid Mechanics, 472, 167–200.

    Article  MATH  Google Scholar 

  9. Crook, A., Sadri, A. M., & Wood, N. J. (1999). The development and implementation of synthetic jets for the control of separated flow. AIAA Paper 1999-3176.

    Google Scholar 

  10. Cui, J., & Agarwal, R. K. (2005). 3-D CFD validation of an axisymmetric jet in cross-flow (NASA Langley workshop validation: Case 2). AIAA Paper 2005-1112.

    Google Scholar 

  11. Cui, J., & Agarwal, R. K. (2006). Three-dimensional computation of a synthetic jet in quiescent air. AIAA Journal, 44(12), 2857–2865.

    Article  Google Scholar 

  12. Dandois, J., Garnier, E., & Sagaut, P. (2006). Unsteady simulation of synthetic jet in a crossflow. AIAA Journal, 44(2), 225–238.

    Article  Google Scholar 

  13. Dandois, J., Garnier, E., & Sagaut, P. (2007). Numerical simulation of active separation control by a synthetic jet. Journal of Fluid Mechanics, 574, 25–58.

    Article  MATH  Google Scholar 

  14. Donovan, J. F., Kral, L. D., & Cary, A. W. (1998). Active flow control applied to an airfoil. AIAA Paper 1998-0210.

    Google Scholar 

  15. Duvigneau, R., Hay, A., & Visonneau, M. (2007). Optimal location of a synthetic jet on an airfoil for stall control. Journal of Fluids Engineering, 129, 825–833.

    Article  Google Scholar 

  16. Duvigneau, R., & Visonneau, M. (2006). Optimization of a synthetic jet actuator for aerodynamic stall control. Computers & Fluids, 35, 624–638.

    Article  MATH  Google Scholar 

  17. Franck, J. A., & Colonius, T. (2008). Large-Eddy simulation of separation control for compressible flow over a wall-mounted hump. AIAA Paper 2008-0555.

    Google Scholar 

  18. Franck, J. A., & Colonius, T. (2010). Compressible large-eddy simulation of separation control on a wall-mounted hump. AIAA Journal, 48(6), 1098–1107.

    Article  Google Scholar 

  19. Gallas, Q., Holman, R., Nishida, T., Carroll, B., Sheplak, M., & Cattafesta, L. (2003). Lumped element modeling of piezoelectric-driven synthetic jet actuators. AIAA Journal, 41(2), 240–247.

    Article  Google Scholar 

  20. Gallas, Q., Holman, R., Raju, R., Mittal, R., Sheplak, M., & Cattafesta, L. (2004). Low dimensional modeling of zero-net mass-flux actuators. AIAA Paper 2004-2413.

    Google Scholar 

  21. Garcillan, L., Zhong, S., Pokusevski, Z., & Wood, N. J. (2004). A PIV study of synthetic jets with different orifice shape and orientation. AIAA Paper 2004-2213.

    Google Scholar 

  22. Garnier, E., Pamart, P. Y., Dandois, J., & Sagaut, P. (2012). Evaluation of the unsteady RANS capabilities for separated flows control. Computers & Fluids, 61, 39–45.

    Article  Google Scholar 

  23. Gilarranz, J. L., Traub, L. W., & Rediniotis, O. K. (2005). A new class of synthetic jet actuators—part II: application to flow separation control. Journal of Fluids Engineering, 127, 377–387.

    Article  Google Scholar 

  24. Glezer, A., & Amitay, M. (2002). Synthetic jets. Annual Review of Fluid Mechanics, 34, 503–529.

    Article  MathSciNet  Google Scholar 

  25. Greenblatt, D., Paschal, K. B., Yao, C. S., Harris, J., Schaeffler, N. W., & Washburn, A. E. (2006). Experimental investigation of separation control part 1: Baseline and steady suction. AIAA Journal, 44(12), 2820–2830.

    Article  Google Scholar 

  26. Greenblatt, D., Paschal, K. B., Yao, C. S., & Harris, J. (2006). Experimental investigation of separation control part 2: Zero mass-efflux oscillatory blowing. AIAA Journal, 44(12), 2831–2845.

    Article  Google Scholar 

  27. Hassan, A. A., & Janakiram, R. D. (1997). Effects of zero-mass synthetic jets on the aerodynamics of the NACA-0012 airfoil. AIAA Paper 97-2326.

    Google Scholar 

  28. Hassan, A. A. (2004). Oscillatory and pulsed jets for improved airfoil aerodynamics—a numerical simulation. AIAA Paper 2004-227.

    Google Scholar 

  29. Höll, T., Wassen, E., & Thiele, F. (2010). Active separation control on a high-lift configuration using segmented actuation slots. AIAA Paper 2010-4249.

    Google Scholar 

  30. Holman, R., Utturkar, Y., Mittal, R., Smith, B. L., & Cattafesta, L. (2005). Formation criterion for synthetic jets. AIAA Journal, 43, 2110–2116.

    Article  Google Scholar 

  31. Hong, G. (2012). Numerical investigation to forcing frequency and amplitude of synthetic jet actuators. AIAA Journal, 50(4), 788–796.

    Article  Google Scholar 

  32. Iaccarino, G., Marongiu, C., Catalano, P., & Amato, M. (2004). RANS modeling and simulations of synthetic jets. AIAA Paper 2004-2223.

    Google Scholar 

  33. Jabbal, M., & Zhong, S. (2008). The near wall effect of synthetic jets in a boundary layer. International Journal of Heat and Fluid Flow, 29, 119–130.

    Article  Google Scholar 

  34. Joslin, R. D., Horta, L. G., & Chen, F. J. (1999). Transitioning active flow control to applications. AIAA Paper 1999-3575.

    Google Scholar 

  35. Kim, S. H., & Kim, C. (2009). Separation control on NACA23012 using synthetic jet. Aerospace Science and Technology, 13, 172–182.

    Article  Google Scholar 

  36. Kim, J. W., Sankar, L., Min, B. Y., Yeshala, N., & Egolf, T. A. (2012). Multiscale modeling of active flow control for fuselage drag reduction. AIAA Paper 2012-0075.

    Google Scholar 

  37. Kotapati, R. B., Mittal, R., & Cattafesta, L. N. (2006). Numerical experiments in synthetic jet based separation control. AIAA Paper 2006-0320.

    Google Scholar 

  38. Kotapati, R. B., Mittal, R., & Cattafesta, L. N. (2007). Numerical study of a transitional synthetic Jet in quiescent external flow. Journal of Fluid Mechanics, 581, 287–321.

    Article  MATH  Google Scholar 

  39. Kral, L. D., Donovan, J. F., Cain, A. B., & Cary, A. W. (1997). Numerical simulation of synthetic jet actuators. AIAA Paper 1997-1824.

    Google Scholar 

  40. Krishnan, V., Squires, K. D., & Forsythe, J. R. (2006). Prediction of separated flow characteristics over a hump. AIAA Journal, 44(2), 252–262.

    Article  Google Scholar 

  41. Lee, C. Y., & Goldstein, D. B. (2001). DNS of microjets for turbulent boundary layer control. AIAA Paper 2001-1013.

    Google Scholar 

  42. Lee, C. Y., & Goldstein, D. B. (2002). Two-dimensional synthetic jet simulation. AIAA Journal, 40(3), 510–516.

    Article  Google Scholar 

  43. Lee, S. K., Lopez Mejia, O. D., Moster, R. D., Muse, J. A., Kutay, A. T., & Calise, A. J. (2013). Simulation of rapidly maneuvering airfoils with synthetic jet actuators. AIAA Journal, 51(8), 1883–1897.

    Article  Google Scholar 

  44. Leschziner, M. A., & Lardeau, S. (2011). Simulation of slot and round synthetic jets in the context of boundary-layer separation control. Philosophical Transactions of the Royal Society A, 369, 1495–1512.

    Article  Google Scholar 

  45. Lockerby, D. A., & Carpenter, P. W. (2004). Modeling and design of microjet actuators. AIAA Journal, 42(2), 220–227.

    Article  Google Scholar 

  46. Mallinson, S. G., Hong, G., & Reizes, J. A. (1999). Some characteristics of synthetic jets. AIAA Paper 1999-3651.

    Google Scholar 

  47. Mallinson, S. G., Kwok, C. Y., & Reizes, J. A. (2003). Numerical simulation of micro-fabricated zero mass-flux jet actuators. Sensor and Actuators A, 105, 229–236.

    Article  Google Scholar 

  48. McCormick, D. C. (2000). Boundary layer separation control with directed synthetic jets. AIAA Paper 2000-0519.

    Google Scholar 

  49. Menon, S., & Soo, J. H. (2004). Simulation of vortex dynamics in three-dimensional synthetic and free jets using the large-eddy lattice Boltzmann method. Journal of Turbulence, 5, 032.

    Article  Google Scholar 

  50. Mittal, R., Kotapati, R. B., & Cattafesta, L. N. (2005). Numerical study of resonant interactions and flow control in a canonical separated flow. AIAA Paper 2005-1261.

    Google Scholar 

  51. Mittal, R., & Rampuggoon, P. (2002). On the virtual aeroshaping effect of synthetic jets. Physics of Fluids, 14(4), 1533–1536.

    Article  Google Scholar 

  52. Mittal, R., Rampuggoon, P., & Udaykumar, H. S. (2001). Interaction of a synthetic jet with a flat plate boundary layer. AIAA Paper 2001-2773.

    Google Scholar 

  53. Morgan, P. E., Rizzetta, D. P., & Visbal, M. R. (2006). High-order numerical simulation of turbulent flow over a wall-mounted hump. AIAA Journal, 44(2), 239–251.

    Article  MathSciNet  Google Scholar 

  54. Na, Y., & Moin, P. (1998). Direct numerical simulation of a separated turbulent boundary layer. Journal of Fluid Mechanics, 370, 175–201.

    Article  MATH  Google Scholar 

  55. Nae, C. (2000). Numerical simulation of a synthetic jet actuator. In Proceedings of 22nd International Congress of Aeronautical Sciences, Harrogate, UK.

    Google Scholar 

  56. Ozawa, T., Lesbros, S., & Hong, G. (2010). LES of synthetic jets in boundary layer with laminar separation caused by adverse pressure gradient. Computers & Fluids, 39, 845–858.

    Article  MATH  Google Scholar 

  57. Pamart, P. Y., Dandois, J., Garnier, E., & Sagaut, P. (2010). Large eddy simulation study of synthetic jet frequency and amplitude effects on a rounded step separated flow. AIAA Paper 2010-5086.

    Google Scholar 

  58. Park, S. H., Yu, Y. H., & Byun, D. Y. (2007). RANS simulations of a synthetic jet in quiescent air. AIAA Paper 2007-1131.

    Google Scholar 

  59. Rathnasingham, R., & Breuer, K. S. (1997a). System identification and control of a turbulent boundary layer. Physics of Fluids, 9, 1867–1869.

    Article  Google Scholar 

  60. Rathnasingham, R., & Breuer, K. S. (1997b). Coupled fluid-structural characteristics of actuators for flow control. AIAA Journal, 35(5), 832–837.

    Article  Google Scholar 

  61. Rathnasingham, R., & Breuer, K. S. (2003). Active control of turbulent boundary layers. Journal of Fluid Mechanics, 495, 209–233.

    Article  MATH  Google Scholar 

  62. Ravi, B. R., Mittal, R., & Najjar, F. M. (2004). Study of three-dimensional synthetic jet flowfields using direct numerical simulation. AIAA Paper 2004-0091.

    Google Scholar 

  63. Ravi, B. R., & Mittal, R. (2006). Numerical study of large aspect-ratio synthetic jets. AIAA Paper 2006-0315.

    Google Scholar 

  64. Ravindran, S. S. (1999). Active control of flow separation over an airfoil, TM-1999-209838. Langley: NASA.

    Google Scholar 

  65. Rizzetta, D. P., Visbal, M. R., & Stanek, M. J. (1999). Numerical investigation of synthetic-jet flowfields. AIAA Journal, 37(8), 919–927.

    Article  Google Scholar 

  66. Rumsey, C. L. (2004). Computation of a synthetic jet in a turbulent cross-flow boundary layer. NASA/TM-2004-213273.

    Google Scholar 

  67. Rumsey, C. L. (2008). Successes and challenges for flow control simulations (invited). AIAA Paper 2008-4311.

    Google Scholar 

  68. Rumsey, C. L. (2009). Successes and challenges for flow control simulations. International Journal of Flow Control, 1(1), 1–27.

    Article  MathSciNet  Google Scholar 

  69. Rumsey, C. L., Gatski, T. B., Sellers, W. L., Vatsa, V. N., & Viken, S. A. (2004). Summary of the 2004 CFD validation workshop on synthetic jets and turbulent separation control. AIAA Paper 2004-2217.

    Google Scholar 

  70. Rumsey, C. L., Gatski, T. B., Sellers, W. L., Vatsa, V. N., & Viken, S. A. (2006). Summary of the 2004 computational fluid dynamics validation workshop on synthetic jets. AIAA Journal, 44(2), 194–207.

    Article  Google Scholar 

  71. Rumsey, C. L., Schaeffler, N. W., Milanovic, I. M., & Zaman, K. B. M. Q. (2005). Time-accurate computations of isolated circular synthetic jets in crossflow. AIAA Paper 2005-5016.

    Google Scholar 

  72. Rumsey, C. L., Schaeffler, N. W., Milanovic, I. M., & Zaman, K. B. M. Q. (2007). Time-accurate computations of isolated circular synthetic jets in crossflow. Computers & Fluids, 36(6), 1092–1105.

    Article  MATH  Google Scholar 

  73. Sahni, O., Wood, J., Jansen, K., & Amitay, A. (2011). Three-dimensional interactions between a finite-span synthetic jet and a cross-flow. Journal of Fluid Mechanics, 671, 254–287.

    Article  MATH  Google Scholar 

  74. Šarić, S., Jakirlić, S., & Tropea, C. (2005). Computational analysis of locally forced flow over a wall-mounted hump at high-Re number. In Proceedings of Fourth International Symposium on Turbulence and Shear Flow Phenomena, pp. 1189–1194.

    Google Scholar 

  75. Schaeffler, N. W., & Jenkins, L. N. (2004). The isolated synthetic jet in crossflow: a benchmark for flow control simulation. AIAA Paper 2004-2219.

    Google Scholar 

  76. Schaeffler, N. W., & Jenkins, L. N. (2006). Isolated synthetic jet in crossflow: experimental protocols for a validation dataset. AIAA Journal, 44(12), 2846–2856.

    Article  Google Scholar 

  77. Shuster, J. M., & Smith, D. R. (2007). Experimental study of the formation and scaling of a round synthetic jet. Physics of Fluids, 19, 045109.

    Article  Google Scholar 

  78. Seifert, A., & Pack, L. G. (2002). Active flow separation control on wall-mounted hump at high Reynolds numbers. AIAA Journal, 40(7), 1363–1372.

    Article  Google Scholar 

  79. Sharma, A. S., Rawat, V. S., Kulkarni, V., & Saha, U. K. (2012). Numerical investigations on flow control over blended-wing-body transonic aircraft using synthetic-jet actuators. Journal of Aircraft, 49(2), 532–545.

    Article  Google Scholar 

  80. Smith, B. L., & Glezer, A. (1997). Vectoring and small-scale motions effected in free shear flows using synthetic jet actuators. AIAA Paper 1997-0213.

    Google Scholar 

  81. Smith, B. L., & Glezer, A. (1998). The formation and evolution of synthetic jets. Physics of Fluids, 10(9), 2281–2297.

    Article  MATH  MathSciNet  Google Scholar 

  82. Smith, B. L., & Glezer, A. (2002). Jet vectoring using synthetic jets. Journal of Fluid Mechanics, 458, 1–34.

    Article  MATH  Google Scholar 

  83. Smith, D., Amitay, M., Kibens, V., Parekh, D., & Glezer, A. (1998). Modification of lifting body aerodynamics using synthetic jet actuators. AIAA Paper 98-0209.

    Google Scholar 

  84. Tang, H., & Zhong, S. (2005). 2D numerical study of circular synthetic jets in quiescent flows. Aeronautical Journal, 109(1092), 89–97.

    Google Scholar 

  85. Tang, H., & Zhong, S. (2006). Incompressible flow model of synthetic jet actuators. AIAA Journal, 44(4), 908–912.

    Article  Google Scholar 

  86. Tang, H., & Zhong, S. (2007). A static compressible flow model of synthetic jet actuators. Aeronautical Journal, 111(1121), 421–431.

    Google Scholar 

  87. Tang, H., & Zhong, S. (2008). Characteristics of small-scale synthetic jets—numerical investigation. In IUTAM Symposium on Flow Control and MEMS, pp. 135–140.

    Google Scholar 

  88. Tang, H., & Zhong, S. (2009). Lumped element modelling of synthetic jet actuators. Aerospace Science and Technology, 13(6), 331-339.

    Google Scholar 

  89. Utturkar, Y., Mittal, R., Rampunggoon, P., & Cattafesta, L. (2002). Sensitivity of synthetic jets to the design of the jet cavity. AIAA Paper 2002-0124.

    Google Scholar 

  90. Vatsa, V. N., & Carpenter, M. (2005). Higher-order temporal schemes with error controllers for unsteady Navier-Stokes equations. AIAA Paper 2005-5245.

    Google Scholar 

  91. Vatsa, V. N., & Turkel, E. (2006). Simulation of synthetic jets using unsteady Reynolds-Averaged Navier-Stokes equations. AIAA Journal, 44(2), 217–224.

    Article  Google Scholar 

  92. Wang, H., & Menon, S. (2001). Fuel-air mixing enhancement by synthetic microjets. AIAA Journal, 39(12), 2308–2319.

    Article  Google Scholar 

  93. Wen, X., & Tang, H. (2014). On hairpin vortices induced by circular synthetic jets in laminar and turbulent boundary layers. Computers & Fluids, 95, 1–18.

    Article  MATH  Google Scholar 

  94. Wu, D. K. L., & Leschziner, M. A. (2008). Large-eddy simulations of synthetic jets in stagnant surroundings and turbulent cross-flow. In IUTAM Symposium on Flow Control and MEMS, pp. 127–134.

    Google Scholar 

  95. Wu, D. K. L., & Leschziner, M. A. (2009). Large-eddy simulations of circular synthetic jets in quiescent surroundings and in turbulent cross-flow. International Journal of Heat and Fluid Flow, 30, 421–434.

    Article  Google Scholar 

  96. Wu, J. M., Lu, X. Y., Denney, A. G., Fan, M., & Wu, J. Z. (1997a). Post-stall lift enhancement on an airfoil by local unsteady control, part I lift, drag and pressure characteristics. AIAA Paper 1997-2063.

    Google Scholar 

  97. Wu, J. M., Lu, X. Y., & Wu, J. Z. (1997b). Post-stall lift enhancement on an airfoil by local unsteady control, part II mode competition and vortex dynamics. AIAA Paper 1997-2064.

    Google Scholar 

  98. Wu, J. Z., Lu, X. Y., Denny, A. G., Fan, M., & Wu, J. M. (1998). Post-stall flow control on an airfoil by local unsteady forcing. Journal of Fluid Mechanics, 371, 21–58.

    Article  MATH  MathSciNet  Google Scholar 

  99. Xia, H., & Qin, N. (2005). Detached-eddy simulation for synthetic jets with moving boundaries. Modern Physics Letters B, 19(28–29), 1429–1434.

    Article  MATH  Google Scholar 

  100. Xia, H., & Qin, N. (2006). Comparison of unsteady laminar and DES solutions of synthetic jet flow. AIAA Paper 2006-3161.

    Google Scholar 

  101. Xia, H., & Qin, N. (2008). DES applied to an isolated synthetic jet flow. In Advances in Hybrid RANS-LES Modelling, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 97, pp. 252–260.

    Google Scholar 

  102. Xia, Q., & Zhong, S. (2014). Enhancement of laminar flow mixing using a pair of staggered lateral synthetic jets. Sensors and Actuators, A: Physical, 207, 75–83.

    Article  Google Scholar 

  103. Yamaleev, N. K., & Carpenter, M. H. (2005). A quasi-1-D model for arbitrary 3-D synthetic jet actuators. AIAA Paper 2005-0643.

    Google Scholar 

  104. Yamaleev, N. K., & Carpenter, M. H. (2006). Quasi-one-dimensional model for realistic three-dimensional synthetic jet actuators. AIAA Journal, 44(2), 208–216.

    Article  Google Scholar 

  105. Yao, C. S., Chen, F. J., & Neuhart, D. (2006). Synthetic jet flowfield database for computational fluid dynamics validation. AIAA Journal, 44(12), 3153–3157.

    Article  Google Scholar 

  106. Yao, C. S., Chen, F. J., Neuhart, D., & Harris, J. (2004). Synthetic jet flow database for CFD validation. AIAA Paper 2004-2218.

    Google Scholar 

  107. You, D., & Moin, P. (2008). Active control of flow separation over an airfoil using synthetic jets. Journal of Fluids and Structures, 28, 1349–1357.

    Article  Google Scholar 

  108. You, D., Wang, M., & Moin, P. (2006). Large-eddy simulation of flow over a wall-mounted hump with separation control. AIAA Journal, 44(11), 2571–2577.

    Google Scholar 

  109. Zhang, P. F., & Wang, J. J. (2007). Novel signal wave pattern for efficient synthetic jet generation. AIAA Journal, 45(5), 1058–1065.

    Article  Google Scholar 

  110. Zhang, S., & Zhong, S. (2011). Turbulent flow separation control over a two-dimensional ramp using synthetic jets. AIAA Journal, 49(12), 2637–2649.

    Article  MathSciNet  Google Scholar 

  111. Zhong, S., Millet, F., & Wood, N. J. (2005). The behaviour of circular synthetic jets in a laminar boundary layer. Aeronautical Journal, 109(1100), 461–470.

    Google Scholar 

  112. Zhong, S., Jabbal, M., Tang, H., Garcillan, L., Guo, F., Wood, N., & Warsop, C. (2007) Towards the design of synthetic jet actuators for full-scale flight conditions-part 1: the fluid mechanics of synthetic jet actuators. Flow, Turbulence and Combustion, 78(3-4), 283-307.

    Google Scholar 

  113. Zhong, S., & Zhang, S. (2013). Further examination of the mechanisms of round synthetic jets in delaying turbulent flow separation. Flow, Turbulence and Combustion, 91(1), 177–208.

    Article  Google Scholar 

  114. Zhou, J., & Zhong, S. (2009). Numerical simulation of the interaction of a circular synthetic jet with a boundary layer. Computers & Fluids, 38, 393–405.

    Article  MATH  Google Scholar 

  115. Zhou, J., & Zhong, S. (2010). Coherent structures produced by the interaction between synthetic jets and a laminar boundary layer and their surface shear stress patterns. Computers & Fluids, 39, 1296–1313.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Tang, H., Zhong, S. (2015). Simulation and Modeling of Synthetic Jets. In: New, D., Yu, S. (eds) Vortex Rings and Jets. Fluid Mechanics and Its Applications, vol 111. Springer, Singapore. https://doi.org/10.1007/978-981-287-396-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-396-5_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-395-8

  • Online ISBN: 978-981-287-396-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics