Skip to main content

Combined Treatment Processes Based on Ultrasound and Photocatalysis for Treatment of Pesticide Containing Wastewater

  • Reference work entry
  • First Online:
Handbook of Ultrasonics and Sonochemistry
  • 3582 Accesses

Abstract

The research area of water purification/wastewater treatment has been extensively growing in the last few decades, especially as the water quality control and regulations against hazardous pollutants are becoming more stringent. Wastewater generated from the pesticide and chemical industries contains toxic and nonbiodegradable compounds, and it is imperative to develop efficient treatment approaches. A promising way to achieve/enhance the degradation of biologically and chemically stable molecules like pesticides is by the application of advanced oxidation processes (AOPs). The chapter focuses on the application of sonochemical reactors and photocatalytic oxidation reactors, either operated individually or in combination, for the treatment of pesticide-containing wastewaters. Initially introduction to the sonochemical reactors has been presented along with the discussion about the benefits that can be obtained using different combinations of advanced oxidation processes based on the sonochemical reactors, Fenton’s chemistry, ozonation, and use of hydrogen peroxide. Guidelines have been presented for the selection of optimum parameters for maximizing the process intensification benefits. Overview of earlier literature in the specific area of sonophotocatalytic oxidation has also been presented. In the last part of chapter, a case study related to the degradation of dichlorvos pesticide in aqueous solution using ultrasonic cavitation and photocatalytic oxidation has been discussed to highlight the methodology for optimization and the expected benefits that can be obtained using the combination approach. Overall it appears that using a combination of advanced oxidation processes under optimized conditions yields significant benefits as compared to the individual operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badawy MI, Ghaly MY, Gad-Allah TA (2006) Advanced oxidation processes for the removal of organophosphorus pesticides from wastewater. Desalination 194:166–175

    Article  CAS  Google Scholar 

  2. Tamimi M, Qourzal S, Barka N, Assabbane A, Ait-Ichou Y (2008) Methomyl degradation in aqueous solutions by Fenton’s reagent and the Photo-Fenton system. Sep Purif Technol 61:103–108

    Article  CAS  Google Scholar 

  3. Mahmoodi NM, Arami M, Limaee NY, Gharanjig K, Nourmohammadian F (2007) Nanophotocatalysis using immobilized titanium dioxide nanoparticles. Degradation and mineralization of water containing organic pollutant: case study of Butachlor. Mater Res Bull 42:797–806

    Article  CAS  Google Scholar 

  4. Grover R, Cessna AJ (1991) Environmental chemistry of herbicides. CRC Press, Boca Raton

    Google Scholar 

  5. Edwards FL, Tchounwoul PB (2005) Environmental toxicology and health effects associated with methyl parathion exposure – a scientific review. Int J Environ Res Pub Health 2(3):430–441

    Article  CAS  Google Scholar 

  6. Shriwas AK, Gogate PR (2011) Ultrasonic degradation of methyl Parathion in aqueous solutions: intensification using additives and scale up aspects. Sep Purif Technol 79:1–7

    Article  CAS  Google Scholar 

  7. Segura C, Zaror C, Mansilla HD, Mondaca MA (2008) Imidacloprid oxidation by Photo-Fenton reaction. J Hazard Mater 150:679–686

    Article  CAS  Google Scholar 

  8. Raut-Jadhav S, Saharan VK, Pinjari DV, Saini DR, Sonawane SH, Pandit AB (2013) Intensification of degradation of imidacloprid in aqueous solutions by combination of hydrodynamic cavitation with various advanced oxidation processes (AOPs). J Environ Chem Eng 1:850–857

    Article  CAS  Google Scholar 

  9. Worthing CR, Hanrce RJ (1991) The pesticide manual: a world compendium, 9th edn. British Crop Protection Council, Farnham

    Google Scholar 

  10. Mingjing Q, Zhaojun H, Xinjun X, Lina Y (2003) Triazophos resistance mechanisms in the rice stem borer (Chilo suppressalis Walker). Pestic Biochem Physiol 77:99–105

    Article  Google Scholar 

  11. Rani S, Madan VK, Kathpal TS (2001) Persistence and dissipation behavior of triazophos in canal water under Indian climatic conditions. Ecotoxicol Environ Saf 50:82–84

    Article  CAS  Google Scholar 

  12. Li R, Yang C, Chen H, Zeng G, Yu G, Guo J (2009) Removal of triazophos pesticide from wastewater with Fenton reagent. J Hazard Mater 167:1028–1032

    Article  CAS  Google Scholar 

  13. Sud D, Kaur P (2012) Heterogeneous photocatalytic degradation of selected organophosphate pesticides: a review. Crit Rev Env Sci Technol 42:2365–2407

    Article  CAS  Google Scholar 

  14. Rangnarsdottir KV (2000) Environmental fate and toxicology of organophosphate pesticides. J Geol Soc 157:859–876

    Article  Google Scholar 

  15. Montgomery MP, Kame F, Saldana TM, Alavanja MCR, Sandler DP (2008) Incident diabetes and pesticide exposure among licensed pesticide applicators: agricultural health study 1993–2003. Am J Epidemiol 167:1235–1246

    Article  CAS  Google Scholar 

  16. Bagal MV, Gogate PR (2012) Sonochemical degradation of alachlor in the presence of process intensifying additives. Sep Purif Technol 90:92–100

    Article  CAS  Google Scholar 

  17. Malato S, Blanco J, Caceres J, Fernandez-Alba AR, Aguera A, Rodriguez A (2002) Photocatalytic treatment of water soluble pesticides by photo-Fenton and TiO2 using solar energy. Catal Today 76:209–220

    Article  CAS  Google Scholar 

  18. Berg P, Hagmeyer G, Gimbel R (1997) Removal of pesticides and other micropollutants by nanofiltration. Desalination 113:205–208

    Article  CAS  Google Scholar 

  19. Thacker NP, Vaidya MV, Sipani M, Kalra A (1997) A removal technology for pesticide contaminants in potable water. J Environ Sci Health B Pestic Food Contam Agric Wastes 4:483–496

    Article  Google Scholar 

  20. Chiron S, Fernandez-Alba A, Rodriguez A, Garcia-Calvo E (2000) Pesticide chemical oxidation: state-of-the-art. Water Res 34(2):366–377

    Article  CAS  Google Scholar 

  21. Zhang Y, Zhang W, Liao X, Zhang J, Hou Y, Xiao Z, Chen F, Hu X (2010) Degradation of diazinon in apple juice by ultrasonic treatment. Ultrason Sonochem 17:662–668

    Article  CAS  Google Scholar 

  22. Martin MJ, Artola A, Balaguer MD, Rigola M (2003) Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions. Chem Eng J 94:231–239

    Article  CAS  Google Scholar 

  23. Arslan I, Balcioglu IA, Bahnemann D (2000) W (2000) Advanced chemical oxidation of reactive dyes in simulated dyehouse by ferrioxalate-Fenton/UV-A and TiO2/UV-A processes. Dyes Pigments 47:207–218

    Article  CAS  Google Scholar 

  24. Cernigoj U, Stangar UL, Trebse P (2007) Degradation of neonicotinoid insecticides by different advanced oxidation processes and studying the effect of ozone on TiO2 photocatalysis. Appl Catal B: Environ 75:229–238

    Article  CAS  Google Scholar 

  25. Ayoub K, Van Hullebusch ED, Cassir M, Bermond A (2010) Application of AOPs for TNT removal: a review. J Hazard Mater 178:10–28

    Article  CAS  Google Scholar 

  26. Gogate PR, Pandit AB (2004) Sonophotocatalytic reactors for wastewater treatment: a critical review. AIChE J 50(5):1051–1079

    Article  CAS  Google Scholar 

  27. Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8:501–551

    Article  CAS  Google Scholar 

  28. Song YL, Li JT, Chen H (2009) Degradation of C.I. Acid Red 88 aqueous solution by combination of Fenton’s reagent and ultrasound irradiation. J Chem Technol Biotechnol 84:578–583

    Article  CAS  Google Scholar 

  29. Marc PT, Verónica GM, Miguel AB, Jaime G, Santiago E (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B: Environ 47:219–256

    Article  Google Scholar 

  30. Pillai KC, Kwon TO, Moon IS (2009) Degradation of wastewater from terephthalic acid manufacturing process by ozonation catalyzed with Fe2+, H2O2 and UV light: direct versus indirect ozonation reactions. Appl Catal B: Environ 91:319–328

    Article  Google Scholar 

  31. Legube B, Karpel Vel Leitner N (1999) Catalytic ozonation: a promising advanced oxidation technology for water treatment. Catal Today 53:61–72

    Article  CAS  Google Scholar 

  32. Rajkumar D, Palanivelu K (2003) Electrochemical degradation of cresols for wastewater treatment. Ind Eng Chem Res 42:1833–1839

    Article  CAS  Google Scholar 

  33. Moholkar VS, Shirgaonkar IZ, Pandit AB (1996) Cavitation and sonochemistry in the eyes of a chemical engineer. Ind Chem Eng B: Ind News 38(2B):81–93

    CAS  Google Scholar 

  34. Save SS, Pandit AB, Joshi JB (1997) Use of hydrodynamic cavitation for large scale microbial cell disruption. Food Bioprod Process 75:41–49

    Article  Google Scholar 

  35. Gogate PR, Pandit AB (2001) Hydrodynamic cavitation reactors: a state of the art review. Rev Chem Eng 17(1):1–85

    Article  CAS  Google Scholar 

  36. Duckhouse H, Mason TJ, Phull SS, Lorimer JP (2004) The effect of sonication on microbial disinfection using hypochlorite. Ultrason Sonochem 11:173

    Article  CAS  Google Scholar 

  37. Blume T, Neis U (2005) Improving chlorine disinfection of wastewater by ultrasound application. Water Sci Technol 52:139

    CAS  Google Scholar 

  38. Wang J, Pan Z, Zhang Z, Zhang X, Wen F, Ma T, Jiang Y, Wang L, Xu L, Kang P (2006) Sonocatalytic degradation of methyl parathion in the presence of nanometer and ordinary anatase titanium dioxide catalysts and comparison of their sonocatalytic abilities. Ultrason Sonochem 13:493–500

    Article  CAS  Google Scholar 

  39. Fan C, Tsui L, Liao M (2011) Parathion degradation and its intermediate formation by Fenton process in neutral environment. Chemosphere 82:229–236

    Article  CAS  Google Scholar 

  40. Yao JJ, Gao NY, Li C, Li L, Xu B (2010) Mechanism and kinetics of parathion degradation under ultrasonic irradiation. J Hazard Mater 175:138–145

    Article  CAS  Google Scholar 

  41. Bourgin M, Violleau F, Debrauwer L, Albet J (2011) Ozonation of imidacloprid in aqueous solutions: reaction monitoring and identification of degradation products. J Hazard Mater 190:1–9

    Article  Google Scholar 

  42. Lin K-D, Yuan D-X (2005) Degradation kinetics and products of triazophos intertidal sediment. J Environ Sci 17(6):933–936

    CAS  Google Scholar 

  43. Babu BR, Meera KMS, Venkatesan P (2011) Removal of pesticides from wastewater by electrochemical methods: a comparative approach. Sustain Environ Res 21(6):401–406

    CAS  Google Scholar 

  44. Schramm JD, Hua I (2001) Ultrasonic irradiation of dichlorvos: decomposition mechanism. Water Res 35(3):665–674

    Article  CAS  Google Scholar 

  45. Golash N, Gogate PR (2012) Degradation of dichlorvos containing wastewaters using sonochemical reactors. Ultrason Sonochem 19:1051–1060

    Article  CAS  Google Scholar 

  46. Lu M-C, Chen J-N, Chang C-P (1999) Oxidation of dichlorvos with hydrogen peroxide using ferrous ion as catalyst. J Hazard Mater 65:277–288

    Article  CAS  Google Scholar 

  47. Oncescu T, Stefan MI, Oancea P (2010) Photocatalytic degradation of dichlorvos in aqueous TiO2 suspensions. Environ Sci Pollut Res Int 17:1158–1166

    Article  CAS  Google Scholar 

  48. Shen J-M, Zhao Z-T, Chen Z-L, Liu Y, Ye M-M, Ren N-Q (2011) Efficiency and mechanism of dichlorvos removal by ozonation. J Harbin Inst Technol 43:19–23

    CAS  Google Scholar 

  49. Torres RA, Mosteo R, Petrier C, Pulgarin C (2009) Experimental design approach to the optimization of ultrasonic degradation of alachlor and enhancement of treated water biodegradability. Ultrason Sonochem 16:425–430

    Article  CAS  Google Scholar 

  50. Ying-Shiha M, Chi-Fangaa S, Jih-Gawb LP (2010) Degradation of carbofuran in aqueous solution by ultrasound and Fenton processes: effect of system parameters and kinetic study. J Hazard Mater 178:320–325

    Article  Google Scholar 

  51. Zapata A, Oller I, Bizani E, Perez J, Maldonado M, Malato S (2009) Evaluation of operational parameters involved in solar photo-Fenton degradation of a commercial pesticide mixture. Catal Today 144L:94–99

    Article  Google Scholar 

  52. Kamat PV (1993) Photochemistry on non-reactive and reactive (semiconductor) surfaces. Chem Rev 93:267–300

    Article  CAS  Google Scholar 

  53. Bhatkhande DS, Pangarkar VG, Beenackers AA (2002) Photocatalytic degradation for environmental applications: a review. J Chem Technol Biotechnol 77(1):102–116

    Article  CAS  Google Scholar 

  54. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69

    Article  CAS  Google Scholar 

  55. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C: Photochem Rev 9:1–12

    Article  CAS  Google Scholar 

  56. Maurino V, Minero C, Pelizzetti E, Vincenti M (1998) Photocatalytic transformation of sulfonylurea herbicides over irradiated titanium dioxide particles. Colloid Surf: A 151:329–338

    Article  Google Scholar 

  57. Wang L, Zhu L, Luo W, Wu Y, Tang H (2007) Drastically enhanced ultrasonic decolorization of methyl orange by adding CCl4. Ultrason Sonochem 14:253–258

    Article  CAS  Google Scholar 

  58. Moctezuma E, Leyva E, Palestino G, de Lasa H (2007) Photocatalytic degradation of methyl parathion: reaction pathways and intermediate reaction products. J Photochem Photobiol A: Chem 186:71–84

    Article  CAS  Google Scholar 

  59. Kitsiou V, Filippidis N, Mantzavinos D, Poulios I (2009) Heterogeneous and homogeneous photocatalytic degradation of the insecticide imidacloprid in aqueous solutions. Appl Catal B: Environ 86(1–2):27–35

    Article  CAS  Google Scholar 

  60. Aungpradit T, Sutthivaiyakit P, Martens D, Sutthivaiyakit S, Kettrup AAF (2007) Photocatalytic degradation of triazophos in aqueous titanium dioxide suspension: Identification of intermediates and degradation pathways. J Hazard Mater 146:204–213

    Article  CAS  Google Scholar 

  61. Evgenidou E, Konstantinou I, Fytianos K (2006) Study of the removal of dichlorvos and dimethoate in a titanium dioxide mediated photocatalytic process through the examination of intermediates and the reaction mechanism. J Hazard Mater 137:1056–1064

    Article  CAS  Google Scholar 

  62. Rahman MA, Muneer M (2005) Photocatalysed degradation of two selected pesticide derivatives, dichlorvos and phosphamidon, in aqueous suspensions of titanium dioxide. Desalination 181:161–172

    Article  CAS  Google Scholar 

  63. Evgenidou E, Fytianos K, Poulios I (2009) Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalyst. Appl Catal B: Environ 59:81–89

    Article  Google Scholar 

  64. Katsumata H, Kobayashia T, Kanecoa S, Suzuki T, Ohta K (2011) Degradation of linuron by ultrasound combined with photo-Fenton treatment. Chem Eng J 166:468–473

    Article  CAS  Google Scholar 

  65. Madhavan J, Kumara PSS, Anandan S, Griesera F, Ashokkumar M (2010) Sonophotocatalytic degradation of monocrotophos using TiO2 and Fe3+. J Hazard Mater 177:944–949

    Article  CAS  Google Scholar 

  66. Bejarano-Pérez NJ, Suárez-Herrera MF (2008) Sonochemical and sonophotocatalytic degradation of malachite green: the effect of carbon tetrachloride on reaction rates. Ultrason Sonochem 15:612–617

    Article  Google Scholar 

  67. Chen W-S, Huang S-C (2011) Sonophotocatalytic degradation of dinitrotoluenes and trinitrotoluene in industrial wastewater. Chem Eng J 172:944–951

    Article  CAS  Google Scholar 

  68. He Y, Grieser F, Ashokkumar M (2011) The mechanism of sonophotocatalytic degradation of methyl orange and its products in aqueous solutions. Ultrason Sonochem 18:974–980

    Article  CAS  Google Scholar 

  69. Kaur S, Singh V (2007) Visible light induced sonophotocatalytic degradation of Reactive Red dye 198 using dye sensitized TiO2. Ultrason Sonochem 14:531–537

    Article  CAS  Google Scholar 

  70. Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment II: hybrid methods. Adv Environ Res 8:553–597

    Article  CAS  Google Scholar 

  71. Sivakumar M, Tatake PA, Pandit AB (2002) Kinetics of p-Nitrophenol degradation: effect of reaction conditions and cavitational parameters for a multiple frequency system. Chem Eng J 85:327–338

    Article  CAS  Google Scholar 

  72. Patil PN, Gogate PR (2015) Degradation of dichlorvos using hybrid advanced oxidation processes based on ultrasound. J Water Proc Eng. 8:e58–e65

    Google Scholar 

  73. Mishra KP, Gogate PR (2011) Intensification of sonophotocatalytic degradation of p-nitrophenol at pilot scale capacity. Ultrason Sonochem 18:739–744

    Article  CAS  Google Scholar 

  74. Behnajady MA, Modirshahla N, Tabrizi SB, Molanee S (2008) Ultrasonic degradation of rhodamine B in aqueous solution: influence of operational parameters. J Hazard Mater 152:381–386

    Article  CAS  Google Scholar 

  75. Merouani S, Hamdaoui O, Saoudi F, Chiha M (2009) Sonochemical degradation of Rhodamine B in aqueous phase: effects of additives. Chem Eng J 158:550–557

    Article  Google Scholar 

  76. Taghizadeh MT, Abdollahi R (2011) Sonolytic, sonocatalytic and sonophotocatalytic degradation of chitosan in the presence of TiO2 nanoparticles. Ultrason Sonochem 18:149–157

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parag R. Gogate .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Patil, P.N., Gogate, P.R. (2016). Combined Treatment Processes Based on Ultrasound and Photocatalysis for Treatment of Pesticide Containing Wastewater. In: Handbook of Ultrasonics and Sonochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-287-278-4_61

Download citation

Publish with us

Policies and ethics