Skip to main content

Bubble Dynamics and Observations

  • Reference work entry
  • First Online:
Handbook of Ultrasonics and Sonochemistry

Abstract

The dynamics of acoustic cavitation bubbles can be complicated due to their nonlinear nature. They comprise several aspects on different spatial and temporal scales: The interplay of bubble and sound field leads to volume oscillations and partly strong implosion of the gas phase, which induces further effects like chemical reactions and luminescence. Acoustic forces lead to bubble translation, interaction, and merging. Non-spherical shape modes can cause deformations and splitting, and the bubble collapse can take place with formation of a fast liquid jet in the case of rapid translation, adjacent bubbles, or solid objects. In multi-bubble systems, acoustic field geometries and bubble interactions lead to emergence of a variety of characteristic dynamical bubble structures. A brief review of these issues is given with an emphasis on observations in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flynn HG (1964) Physics of acoustic cavitation in liquids. In: Mason WP (ed) Physical acoustics, vol 1B. Academic, London, pp 57–172

    Google Scholar 

  2. Rozenberg LD (1971) High-intensity ultrasonic fields. Plenum Press, New York

    Book  Google Scholar 

  3. Plesset MS, Prosperetti A (1977) Bubble dynamics and cavitation. Annu Rev Fluid Mech 9:145

    Article  CAS  Google Scholar 

  4. Neppiras EA (1980) Acoustic cavitation. Phys Rep 61:159

    Article  Google Scholar 

  5. Young FR (1989) Cavitation. McGraw-Hill, London

    Google Scholar 

  6. Leighton TG (1994) The acoustic bubble. Academic, London

    Google Scholar 

  7. Brennen CE (1995) Cavitation and bubble dynamics. Oxford University Press, New York

    Google Scholar 

  8. Lauterborn W et al (1999) Experimental and theoretical bubble dynamics. In: Prigogine I, Rice SA (eds) Advances in chemical physics, vol 110. Wiley, New York, pp 295–380

    Chapter  Google Scholar 

  9. Trevena DH (1987) Cavitation and tension in liquids. Adam Hilger, Bristol

    Google Scholar 

  10. Crum L (1982) Acoustic cavitation. In: 1982 ultrasonics symposium. IEEE. pp 1–11

    Google Scholar 

  11. Mørch KA (2007) Reflections on cavitation nuclei in water. Phys Fluids 19:072104

    Article  CAS  Google Scholar 

  12. Fox FE, Francis E, Herzfeld KF (1954) Gas bubbles with organic skin as cavitation nuclei. J Acoust Soc Am 26:984

    Article  Google Scholar 

  13. Yount DE (1982) On the evolution, generation, and regeneration of gas cavitation nuclei. J Acoust Soc Am 71:1473

    Article  CAS  Google Scholar 

  14. Lauterborn W, Vogel A (2013) Shock wave emission by laser generated bubbles, Chap. I.3. In: Delale CF (ed) Bubble dynamics & shock waves, vol 8, Shockwaves. Springer, Berlin, pp 67–103

    Chapter  Google Scholar 

  15. Sankin G et al (2001) Early stage of bubble dynamics and luminescence in water in a converging shock reflected by a free surface. In: v. Estorff O (ed) Fortschritte der Akustik – DAGA 2001. DEGA, Oldenburg, pp 258–259

    Google Scholar 

  16. Mettin R (2007) From a single bubble to bubble structures in acoustic cavitation. In: Kurz T, Parlitz U, Kaatze U (eds) Oscillations, waves and interactions. Universitätsverlag Göttingen, Göttingen, pp 171–198

    Google Scholar 

  17. Krefting D (2003) Dissertation. Georg-August-University Göttingen

    Google Scholar 

  18. Fernandez Rivas D et al (2013) Ultrasound artificially nucleated bubbles and their sonochemical radical production. Ultrason Sonochem 20:510

    Article  CAS  Google Scholar 

  19. Apfel RE (1970) The role of impurities in cavitation‐threshold determination. J Acoust Soc Am 48:1179

    Article  Google Scholar 

  20. Nyborg WL (1965) Acoustic streaming. In: Mason WP (ed) Physical acoustics, vol 2B. Academic, New York, pp 265–331

    Google Scholar 

  21. Zarembo LK (1971) Acoustic streaming. In: Rozenberg LD (ed) High-intensity ultrasonic fields part III. Plenum Press, New York, pp 137–199

    Google Scholar 

  22. Hatanaka S et al (2002) Influence of bubble clustering on multibubble sonoluminescence. Ultrasonics 40:655

    Article  CAS  Google Scholar 

  23. Gilmore FR (1952) Collapse and growth of a spherical bubble in a viscous compressible liquid, Tech. Rep. No. 26-4, Office of Naval Research, Hydrodynamics Laboratory, California. Institute of Technology, Pasadena

    Google Scholar 

  24. Keller JB, Miksis M (1980) Bubble oscillations of large amplitude. J Acoust Soc Am 68:628

    Article  Google Scholar 

  25. Prosperetti A, Lezzi A (1986) Bubble dynamics in a compressible liquid. Part 1. First-order theory. J Fluid Mech 168:457

    Article  CAS  Google Scholar 

  26. Yasui K (1997) Alternative model of single-bubble sonoluminescence. Phys Rev E 56:6750

    Article  CAS  Google Scholar 

  27. Storey BD, Szeri AJ (2000) Water vapour, sonoluminescence and sonochemistry. Proc Roy Soc Lond A 456:1685

    Article  CAS  Google Scholar 

  28. Guckenheimer J, Holmes P (1982) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, vol 42, Applied mathematical sciences. Springer, New York

    Google Scholar 

  29. Lauterborn W (1976) Numerical investigation of nonlinear oscillations of gas bubbles in liquids. J Acoust Soc Am 59:283

    Article  Google Scholar 

  30. Lauterborn W, Mettin R (1999) Nonlinear bubble dynamics: response curves and more. In: Crum LA et al (eds) Sonochemistry and sonoluminescence. Kluwer, Dordrecht, pp 63–72

    Chapter  Google Scholar 

  31. Holt RG, Crum LA (1992) Acoustically forced oscillations of air bubbles in water: experimental results. J Acoust Soc Am 91:1924

    Article  Google Scholar 

  32. Parlitz U et al (1990) Bifurcation structure of bubble oscillators. J Acoust Soc Am 88:1061

    Article  Google Scholar 

  33. Thiemann A (2011) Dissertation. Georg-August-University Göttingen

    Google Scholar 

  34. Nowak T et al (2015) Acoustic streaming and bubble translation at a cavitating ultrasonic horn. In: Recent developments in nonlinear acoustics: 20th international symposium on nonlinear acoustics including the 2nd international sonic boom forum, AIP Conf. Proc. 1685, 020002-1-9 (2015); http://dx.doi.org/10.1063/1.4934382

  35. Mason TJ, Lorimer JP (2002) Applied sonochemistry. Wiley-VCH, Weinheim

    Book  Google Scholar 

  36. Gaitan DF et al (1992) Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J Acoust Soc Am 91:3166

    Article  Google Scholar 

  37. Putterman SJ, Weninger KR (2000) Sonoluminescence: how bubbles turn sound into light. Annu Rev Fluid Mech 32:445

    Article  Google Scholar 

  38. Brenner MP, Hilgenfeldt S, Lohse D (2002) Single-bubble sonoluminescence. Rev Mod Phys 74:425

    Article  CAS  Google Scholar 

  39. Holzfuss J, Rüggeberg M, Billo A (1998) Shock wave emissions of a sonoluminescing bubble. Phys Rev Lett 81:5434

    Article  CAS  Google Scholar 

  40. McNamara WB, Didenko YT, Suslick KS (1999) Sonoluminescence temperatures during multi-bubble cavitation. Nature 401:772

    Article  CAS  Google Scholar 

  41. Hiller R, Putterman S, Barber BP (1992) Spectrum of synchronous picosecond sonoluminescence. J Acoust Soc Am 92:2454

    Article  Google Scholar 

  42. Yasui K et al (2008) The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions. J Chem Phys 128:184705

    Article  CAS  Google Scholar 

  43. Wu CC, Roberts PH (1994) A model of sonoluminescence. Proc Roy Soc Lond A 445:323

    Article  Google Scholar 

  44. Akhatov I et al (2001) Collapse and rebound of a laser-induced cavitation bubble. Phys Fluids 13:2805

    Article  CAS  Google Scholar 

  45. Schanz D et al (2012) Molecular dynamics simulations of cavitation bubble collapse and sonoluminescence. New J Phys 14:113019

    Article  CAS  Google Scholar 

  46. Geisler R (1998) Diploma thesis. Georg-August-University Göttingen

    Google Scholar 

  47. Mettin R, Cairós C, Troia A (2015) Sonochemistry and bubble dynamics. Ultrason Sonochem 25:24

    Article  CAS  Google Scholar 

  48. Bjerknes VFK (1906) Fields of force. Columbia University Press, New York

    Google Scholar 

  49. Akhatov I et al (1997) Bjerknes force threshold for stable single bubble sonoluminescence. Phys Rev E 55:3747

    Article  CAS  Google Scholar 

  50. Matula TJ et al (1997) Bjerknes force and bubble levitation under single-bubble sonoluminescence conditions. J Acoust Soc Am 102:1522

    Article  Google Scholar 

  51. Thompson JMT, Stewart HB (1986) Nonlinear dynamics and chaos. Wiley, Chichester

    Google Scholar 

  52. Mettin R, Doinikov AA (2009) Translational instability of a spherical bubble in a standing ultrasound wave. Appl Acoust 70:1330

    Article  Google Scholar 

  53. Zabolotskaya EA (1984) Interaction of gas bubbles in the field of a sonic wave. Akust Zh 30:618, transl. Sov. Phys. Acoust. 30, 365 (1984)

    Google Scholar 

  54. Luther S, Mettin R, Lauterborn W (2000) Modeling acoustic cavitation by a Lagrangian approach. In: Lauterborn W, Kurz T (eds) Nonlinear acoustics at the turn of the millennium. AIP conference proceedings, vol 524. AIP, Melville, pp 351–354

    Google Scholar 

  55. Harkin A, Kaper TJ, Nadim A (2001) Coupled pulsation and translation of two gas bubbles in a liquid. J Fluid Mech 445:377

    Article  Google Scholar 

  56. Ilinskii YA, Hamilton MF, Zabolotskaya EA (2007) Bubble interaction dynamics in Lagrangian and Hamiltonian mechanics. J Acoust Soc Am 121:786

    Article  CAS  Google Scholar 

  57. Mettin R et al (2000) Dynamics of delay-coupled spherical bubbles. In: Lauterborn W, Kurz T (eds) Nonlinear acoustics at the turn of the millennium, AIP conference proceedings, vol 524. AIP, Melville, pp 359–362

    Google Scholar 

  58. Doinikov AA, Manasseh R, Ooi A (2005) Time delays in coupled multibubble systems. J Acoust Soc Am 117:47

    Article  CAS  Google Scholar 

  59. Crum LA (1975) Bjerknes forces on bubbles in a stationary sound field. J Acoust Soc Am 57:1363

    Article  Google Scholar 

  60. Mettin R et al (1997) Bjerknes forces between small cavitation bubbles in a strong acoustic field. Phys Rev E 56:2924

    Article  CAS  Google Scholar 

  61. Oguz HN, Prosperetti A (1990) A generalization of the impulse and virial theorems with an application to bubble oscillations. J Fluid Mech 218:143

    Article  CAS  Google Scholar 

  62. Doinikov AA (1999) Effects of the second harmonic on the secondary Bjerknes force. Phys Rev E 59:3016

    Article  CAS  Google Scholar 

  63. Barbat T, Ashgriz N, Liu C-S (1999) Dynamics of two interacting bubbles in an acoustic field. J Fluid Mech 389:137

    Article  Google Scholar 

  64. Koch P et al (2003) Simulation of the translational motion of few cavitation bubbles in an ultrasonic field. In: Proceedings of IEEE international ultrasonics symposium, Honolulu, 5–8 Oct 2003, pp 1475–1478

    Google Scholar 

  65. Mettin R et al (2006) Modeling acoustic cavitation with bubble redistribution. In: 6th international symposium on cavitation – CAV2006, Wageningen, 11.15 Sept, paper no. 75

    Google Scholar 

  66. Yoshida K, Fujikawa T, Watanabe Y (2011) Experimental investigation on reversal of secondary Bjerknes force between two bubbles in ultrasonic standing wave. J Acoust Soc Am 130:135

    Article  Google Scholar 

  67. Magnaudet J, Legendre D (1998) The viscous drag force on a spherical bubble with a time-dependent radius. Phys Fluids 10:550

    Article  CAS  Google Scholar 

  68. Appel J et al (2004) Stereoscopic highs-peed recording of bubble filaments. Ultrason Sonochem 11:39

    Article  CAS  Google Scholar 

  69. Kapustina OA (1973) Degassing of liquids. In: Rozenberg LD (ed) Physical principles of ultrasonic technology. Plenum Press, New York, Part IV

    Google Scholar 

  70. Longuet-Higgins M (1999) Particle drift near an oscillating cavity. In: Crum LA et al (eds) Sonochemistry and sonoluminescence. Kluwer, Dordrecht, pp 105–116

    Chapter  Google Scholar 

  71. Obreschkow D et al (2011) Universal scaling law for jets of collapsing bubbles. Phys Rev Lett 107:204501

    Article  CAS  Google Scholar 

  72. Benjamin TB, Ellis AT (1966) The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Philos Trans R Soc Lond A260:221

    Article  Google Scholar 

  73. Calvisi ML et al (2007) Shape stability and violent collapse of microbubbles in acoustic traveling waves. Phys Fluids 19:047101

    Article  CAS  Google Scholar 

  74. Wang QX, Blake JR (2010) Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. J Fluid Mech 659:191

    Article  Google Scholar 

  75. Nowak T, Mettin R (2014) Unsteady translation and repetitive jetting of acoustic cavitation bubbles. Phys Rev E 90:033016

    Article  CAS  Google Scholar 

  76. Tomita Y, Shima A, Sato K (1990) Dynamic behavior of two‐laser‐induced bubbles in water. Appl Phys Lett 57:234

    Article  CAS  Google Scholar 

  77. Fong SW et al (2009) Interactions of multiple spark-generated bubbles with phase differences. Exp Fluids 46:705

    Article  Google Scholar 

  78. Sankin GN, Yuan F, Zhong P (2010) Pulsating tandem microbubble for localized and directional single-cell membrane poration. Phys Rev Lett 105:078101

    Article  CAS  Google Scholar 

  79. Han B et al (2015) Dynamics of laser-induced bubble pairs. J Fluid Mech 771:706

    Article  Google Scholar 

  80. Plesset MS, Chapman RB (1971) Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J Fluid Mech 47:283

    Article  Google Scholar 

  81. Lauterborn W, Bolle H (1975) Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J Fluid Mech 72:391

    Article  Google Scholar 

  82. Blake JR, Gibson DC (1987) Cavitation bubbles near boundaries. Annu Rev Fluid Mech 19:99

    Article  Google Scholar 

  83. Bourne NK, Field JE (1992) Shock-induced collapse of single cavities in liquids. J Fluid Mech 244:225

    Article  CAS  Google Scholar 

  84. Ohl CD, Ikink R (2003) Shock-wave-induced jetting of micron-size bubbles. Phys Rev Lett 90:214502

    Article  CAS  Google Scholar 

  85. Sankin GN et al (2005) Shock wave interaction with laser-generated single bubbles. Phys Rev Lett 95:034501. Tomita Y, Shima A (1986) Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J Fluid Mech 169:535

    Google Scholar 

  86. Philipp A, Lauterborn W (1998) Cavitation erosion by single laser-produced bubbles. J Fluid Mech 361:75

    Article  CAS  Google Scholar 

  87. Olaf J (1957) Oberflächenreinigung mit Ultraschall. Acustica 7:253

    Google Scholar 

  88. Agranat A, Bashkirov VI, Kitaigorodskii YI (1973) Ultrasonic cleaning. In: Rozenberg LD (ed) Physical principles of ultrasonic technology. Plenum Press, New York, Part III

    Google Scholar 

  89. Krefting D, Mettin R, Lauterborn W (2004) High-speed observation of acoustic cavitation erosion in multibubble systems. Ultrason Sonochem 11:119

    Article  CAS  Google Scholar 

  90. Ohl C-D et al (2006) Surface cleaning from laser-induced cavitation bubbles. Appl Phys Lett 89:074102

    Article  CAS  Google Scholar 

  91. Reuter F, Mettin R (2016) Mechanisms of single bubble cleaning. Ultrason Sonochem 29:550–562. doi:10.1016/j.ultsonch.2015.06.017

    Google Scholar 

  92. Prosperetti A (2011) Advanced mathematics for applications. Cambridge University Press, Cambridge

    Google Scholar 

  93. Kornfeld M, Suvorov L (1944) On the destructive action of cavitation. J Appl Phys 15:495

    Article  CAS  Google Scholar 

  94. Krefting D, Mettin R, Lauterborn W (2001) Translationsdynamik levitierter Einzelblasen. In: v. Estorff O (ed) Fortschritte der Akustik – DAGA 2001. DEGA, Oldenburg, pp 252–253

    Google Scholar 

  95. Mettin R (2005) Bubble structures in acoustic cavitation. In: Doinikov AA (ed) Bubble and particle dynamics in acoustic fields: modern trends and applications. Research Signpost, Kerala, pp 1–36

    Google Scholar 

  96. Plesset MS (1954) On the stability of fluid flows with spherical symmetry. J Appl Phys 25:96

    Article  CAS  Google Scholar 

  97. Sharp DH (1984) An overview of Rayleigh-Taylor instability. Phys D 12:3

    Article  Google Scholar 

  98. Kull HJ (1991) Theory of the Rayleigh-Taylor instability. Phys Rep 206:197. Eller A, Flynn HG (1965) Rectified diffusion during nonlinear pulsations of cavitation bubbles. J Acoust Soc Am 37(3):493–503

    Google Scholar 

  99. Hinsch K (1975) The dynamics of bubble fields in acoustic cavitation. In: Akulichev VA et al (eds) Proceedings of 6th international symposium on nonlinear acoustics. Moscow University, pp 26–34

    Google Scholar 

  100. Mettin R, Ohl C-D, Lauterborn W (1999) Particle approach to structure formation in acoustic cavitation. In: Crum LA et al (eds) Sonochemistry and sonoluminescence. Kluwer, Dordrecht, pp 138–144

    Google Scholar 

  101. Mettin R et al (1999) Acoustic cavitation structures and simulations by a particle model. Ultrason Sonochem 6:25

    Article  CAS  Google Scholar 

  102. Zabalotskaya EA (1973) Emission of harmonic and combination-frequency waves by air bubbles. Sov Phys Acoust 18:396

    Google Scholar 

  103. Commander KW, Prosperetti A (1988) Linear pressure waves in bubbly liquids: comparison between theory and experiments. J Acoust Soc Am 85:732

    Article  Google Scholar 

  104. Caflisch RE et al (1985) Effective equations for wave propagation in bubbly liquids. J Fluid Mech 153:259

    Article  Google Scholar 

  105. Kobelev YA, Ostrovsky LA (1989) Nonlinear acoustic phenomena due to bubble drift in a gas–liquid mixture. J Acoust Soc Am 85:621

    Article  CAS  Google Scholar 

  106. Louisnard O (2012) A simple model of ultrasound propagation in a cavitating liquid. Part I: theory, nonlinear attenuation and traveling wave generation. Ultrason Sonochem 19:56

    Article  CAS  Google Scholar 

  107. Jamshidi R, Brenner G (2013) Dissipation of ultrasonic wave propagation in bubbly liquids considering the effect of compressibility to the first order of acoustical Mach number. Ultrasonics 53:842

    Article  CAS  Google Scholar 

  108. Mettin R et al (2002) Advanced observation and modeling of an acoustic cavitation structure. In: Rudenko OV, Sapozhnikov OA (eds) Nonlinear acoustics at the beginning of the 21st century, proceedings of 16th international symposium on nonlinear acoustics, vol 2. Moscow State University, Moscow, pp 1003–1006

    Google Scholar 

  109. Mettin R et al (2002) Bubble structures in acoustic cavitation: observation and modelling of a “jellyfish’-streamer. In: Forum acousticum Sevilla, Spain, 16–20 Sept 2002, Special Issue of the Revista de Acustica, Vol. XXXIII, 2002, ULT-02-004-IP

    Google Scholar 

  110. Lichtenberg GC (1777) Nova method natvram ac motvm fluidi electrici investigandi. Novi Commentarii Soc Regaiae 8:168–179

    Google Scholar 

  111. Merrill FH, Von Hippel A (1939) The atom physical interpretation of Lichtenberg figures and their application to the study of gas discharge phenomena. J Appl Phys 10:873

    Article  CAS  Google Scholar 

  112. Thiemann A et al (2011) Characterization of an acoustic cavitation bubble structure at 230 kHz. Ultrason Sonochem 18:595

    Article  CAS  Google Scholar 

  113. Cairós C et al (2014) Effects of argon sparging rate, ultrasonic power, and frequency on multibubble sonoluminescence spectra and bubble dynamics in NaCl aqueous solutions. Ultrason Sonochem 21:2044

    Article  CAS  Google Scholar 

  114. Bar-Yam Y (1997) Dynamics of complex systems, vol 213. Addison-Wesley, Reading

    Google Scholar 

  115. Badii R, Politi A (1999) Complexity: hierarchical structures and scaling in physics. Cambridge University Press, Cambridge

    Google Scholar 

  116. Siegel CL, Moser J (1971) Lectures on celestial mechanics. Springer, New York

    Book  Google Scholar 

  117. Ilinskii YA, Zabolotskaya EA (1992) Cooperative radiation and scattering of acoustic waves by gas bubbles in liquids. J Acoust Soc Am 92:2837

    Article  Google Scholar 

  118. Parlitz U et al (1999) Spatio–temporal dynamics of acoustic cavitation bubble clouds. Philos Trans R Soc Lond A 357:313

    Article  CAS  Google Scholar 

  119. Tervo JT, Mettin R, Lauterborn W (2006) Bubble cluster dynamics in acoustic cavitation. Acta Acustica United Acustica 92:178

    Google Scholar 

  120. Chan CU, Ohl C-D (2012) Total-internal-reflection-fluorescence microscopy for the study of nanobubble dynamics. Phys Rev Lett 109:174501

    Article  CAS  Google Scholar 

  121. San Lee J, Weon BM, Je JH (2013) X-ray phase-contrast imaging of dynamics of complex fluids. J Phys D 46:494006

    Article  CAS  Google Scholar 

  122. Tyrrell JW, Attard P (2001) Images of nanobubbles on hydrophobic surfaces and their interactions. Phys Rev Lett 87:176104

    Article  CAS  Google Scholar 

  123. Chan CU et al (2015) Collapse of surface nanobubbles. Phys Rev Lett 114:114505

    Article  CAS  Google Scholar 

  124. Rossinelli D et al (2013) 11 PFLOP/s simulations of cloud cavitation collapse. In: Conference for high-performance computing, networking, storage and analysis. IEEE, Denver, pp 1–13

    Google Scholar 

  125. Kinjo T, Matsumoto M (1998) Cavitation processes and negative pressure. Fluid Phase Equilib 144:343

    Article  CAS  Google Scholar 

  126. Malyshev VL et al (2015) Study of the tensile strength of a liquid by molecular dynamics methods. High Temp 53:406

    Article  CAS  Google Scholar 

  127. Shekhar A et al (2013) Nanobubble collapse on a silica surface in water: billion-atom reactive molecular dynamics simulations. Phys Rev Lett 111:184503

    Article  CAS  Google Scholar 

  128. Fu H et al (2015) Sonoporation at small and large length scales: effect of cavitation bubble collapse on membranes. J Phys Chem Lett 6:413

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Mettin .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Mettin, R., Cairós, C. (2016). Bubble Dynamics and Observations. In: Handbook of Ultrasonics and Sonochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-287-278-4_3

Download citation

Publish with us

Policies and ethics