Skip to main content

Biodegradable Thermogelling Poly(Organophosphazenes) and Their Potential Biomedical Applications

  • Chapter
  • First Online:
In-Situ Gelling Polymers

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 1593 Accesses

Abstract

Poly(organophosphazenes) as a new type of biodegradable polymers have been exploited as carriers for various drug delivery systems due to versatility of molecular structures and easily modulated physico-chemical properties. Thus, biodegradable thermogelling poly(organophosphazenes) are expected to be very promising biomaterials as injectable systems with minimal surgical intervention for drug delivery and tissue engineering applications. The key advantage of thermosensitive hydrogels based on poly(organophosphazenes) over other thermosensitive polymers is the ease of tuning the hydrogel properties by use of different compositions of side groups or through variations in co-substituent ratios. A variety of poly(organophosphazene) thermogels have been developed with desirable hydrophobic-hydrophilic balance, controllable degradation rate and suitable mechanical properties with respect to different applications. This chapter covers a comprehensive summary of the recent developments in this field of study, including polymer design, property assessment and potential biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hoffman, A.S.: Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 54(1), 3–12 (2002). doi:10.1016/s0169-409x(01)00239-3

    CAS  Google Scholar 

  2. Bromberg, L.E., Ron, E.S.: Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv. Drug Deliv. Rev. 31(3), 197–221 (1998). doi:10.1016/s0169-409x(97)00121-x

    CAS  Google Scholar 

  3. Gil, E.S., Hudson, S.M.: Stimuli-reponsive polymers and their bioconjugates. Prog. Polym. Sci. 29(12), 1173–1222 (2004). doi:10.1016/j.progpolymsci.2004.08.003

    CAS  Google Scholar 

  4. Jeong, B., Kim, S.W., Bae, Y.H.: Thermosensitive sol-gel reversible hydrogels. Adv. Drug Deliv. Rev. 54(1), 37–51 (2002). doi:10.1016/s0169-409x(01)00242-3

    CAS  Google Scholar 

  5. Miyata, T., Uragami, T., Nakamae, K.: Biomolecule-sensitive hydrogels. Adv. Drug Deliv. Rev. 54(1), 79–98 (2002). doi:10.1016/s0169-409x(01)00241-1

    CAS  Google Scholar 

  6. Schmaljohann, D.: Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 58(15), 1655–1670 (2006). doi:10.1016/j.addr.2006.09.020

    CAS  Google Scholar 

  7. Kwon, I.K., Matsuda, T.: Photo-iniferter-based thermoresponsive block copolymers composed of poly(ethylene glycol) and poly(N-isopropylacrylamide) and chondrocyte immobilization. Biomaterials 27(7), 986–995 (2006). doi:10.1016/j.biomaterials.2005.07.038

    CAS  Google Scholar 

  8. Li, C.M., Buurma, N.J., Haq, I., Turner, C., Armes, S.P., Castelletto, V., Hamley, I.W., Lewis, A.L.: Synthesis and characterization of biocompatible, thermoresponsive ABC and ABA triblock copolymer gelators. Langmuir 21(24), 11026–11033 (2005). doi:10.1021/la0515672

    CAS  Google Scholar 

  9. Li, C.M., Tang, Y.Q., Armes, S.P., Morris, C.J., Rose, S.F., Lloyd, A.W., Lewis, A.L.: Synthesis and characterization of biocompatible thermo-responsive gelators based on ABA triblock copolymers. Biomacromolecules 6(2), 994–999 (2005). doi:10.1021/bm049331k

    CAS  Google Scholar 

  10. Lin, H.H., Cheng, Y.L.: In situ thermoreversible gelation of block and star copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) of varying architectures. Macromolecules 34(11), 3710–3715 (2001). doi:10.1021/ma001852m

    CAS  Google Scholar 

  11. Tang, T., Castelletto, V., Parras, P., Hamley, I.W., King, S.M., Roy, D., Perrier, S., Hoogenboom, R., Schubert, U.S.: Thermo-responsive poly(methyl methacrylate)-block-poly(N-isopropylacrylamide) block copolymers synthesized by RAFT polymerization: micellization and gelation. Macromol. Chem. Phys. 207(19), 1718–1726 (2006). doi:10.1002/macp.200600309

    CAS  Google Scholar 

  12. Glatter, O., Scherf, G., Schillen, K., Brown, W.: Characterization of a poly(ethylene oxide) poly(propylene oxide) triblock copolymer (eo(27)-po39-eo(27)) in aqueous-solution. Macromolecules 27(21), 6046–6054 (1994). doi:10.1021/ma00099a017

    CAS  Google Scholar 

  13. Jorgensen, E.B., Hvidt, S., Brown, W., Schillen, K.: Effects of salts on the micellization and gelation of a triblock copolymer studied by rheology and light scattering. Macromolecules 30(8), 2355–2364 (1997). doi:10.1021/ma9616322

    CAS  Google Scholar 

  14. Mortensen, K., Brown, W.: Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous-solution - the influence of relative block size. Macromolecules 26(16), 4128–4135 (1993). doi:10.1021/ma00068a010

    CAS  Google Scholar 

  15. Song, M.J., Lee, D.S., Ahn, J.H., Kim, D.J., Kim, S.C.: Dielectric behavior during sol-gel transition of PEO-PPO-PEO triblock copolymer aqueous solution. Polym. Bull. 43(6), 497–504 (2000). doi:10.1007/s002890050007

    CAS  Google Scholar 

  16. Sosnik, A., Cohn, D.: Reverse thermo-responsive poly(ethylene oxide) and poly(propylene oxide) multiblock copolymers. Biomaterials 26(4), 349–357 (2005). doi:10.1016/j.biomaterials.2004.02.041

    CAS  Google Scholar 

  17. Wanka, G., Hoffmann, H., Ulbricht, W.: The aggregation behavior of poly-(oxyethylene)-poly-(oxypropylene)-poly-(oxyethylene)-block-copolyme rs in aqueous-solution. Colloid Polym. Sci. 268(2), 101–117 (1990). doi:10.1007/bf01513189

    CAS  Google Scholar 

  18. Bae, S.J., Suh, J.M., Sohn, Y.S., Bae, Y.H., Kim, S.W., Jeong, B.: Thermogelling poly(caprolactone-b-ethylene glycol-b-caprolactone) aqueous solutions. Macromolecules 38(12), 5260–5265 (2005). doi:10.1021/ma050489m

    CAS  Google Scholar 

  19. Fujiwara, T., Mukose, T., Yamaoka, T., Yamane, H., Sakurai, S., Kimura, Y.: Novel thermo-responsive formation of a hydrogel by stereo-complexation between PLLA-PEG-PLLA and PDLA-PEG-PDLA block copolymers. Macromol. Biosci. 1(5), 204–208 (2001). doi:10.1002/1616-5195(20010701)1:5<204:aid-mabi204>3.0.co;2-h

    CAS  Google Scholar 

  20. Jeong, B., Bae, Y.H., Lee, D.S., Kim, S.W.: Biodegradable block copolymers as injectable drug-delivery systems. Nature 388(6645), 860–862 (1997)

    CAS  Google Scholar 

  21. Lee, J., Bae, Y.H., Sohn, Y.S., Jeong, B.: Thermogelling aqueous solutions of alternating multiblock copolymers of poly(L-lactic acid) and poly(ethylene glycol). Biomacromolecules 7(6), 1729–1734 (2006). doi:10.1021/bm0600062

    CAS  Google Scholar 

  22. Li, F., Li, S.M., El Ghzaoui, A., Nouailhas, H., Zhuo, R.X.: Synthesis and gelation properties of PEG-PLA-PEG triblock copolymers obtained by coupling monohydroxylated PEG-PLA with adipoyl chloride. Langmuir 23(5), 2778–2783 (2007). doi:10.1021/la0629025

    CAS  Google Scholar 

  23. Loh, X.J., Goh, S.H., Li, J.: New biodegradable thermogelling copolymers having very low gelation concentrations. Biomacromolecules 8(2), 585–593 (2007). doi:10.1021/bm0607933

    CAS  Google Scholar 

  24. Jeong, B., Gutowska, A.: Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol. 20(7), 305–311 (2002). doi:10.1016/s0167-7799(02)01962-5

    CAS  Google Scholar 

  25. Loh, X.J., Li, J.: Biodegradable thermosensitive copolymer hydrogels for drug delivery. Expert Opin. Ther. Pat. 17(8), 965–977 (2007). doi:10.1517/13543776.17.8.965

    CAS  Google Scholar 

  26. Allcock, H.R.: Polyphosphazenes as New Biomedical and Bioactive Materials. In: Langer, R., Chasin, M. (eds.) Biodegradable Polymers as Drug Delivery System, pp. 163–193. Marcel Dekker, New York (1990)

    Google Scholar 

  27. Allcock, H.R.: Rational design and synthesis of polyphosphazenes for tissue engineering. In: Atala, A., Lanza, R. (eds.) Methods of Tissue Engineering, pp. 597–607. Academic Press, New York (2001)

    Google Scholar 

  28. Scopelianos, A.G.: Polyphosphazenes as new biomaterials. In: Shalaby, S. (ed.) Biomedical Polymers, pp. 153–171. Hanser Publishers, Munich and New York (1994)

    Google Scholar 

  29. Allcock, H.R., Kugel, R.L.: Synthesis of high polymeric alkoxy- and aryloxphosphonitriles. J. Am. Chem. Soc. 87(18), 4216 (1965). doi:10.1021/ja01096a056

    CAS  Google Scholar 

  30. Allcock, H.R., Kugel, R.L.: Phosphonitrilic compounds. 7. High molecular weight poly(diaminophosphazenes). Inorg. Chem. 5(10), 1716 (1966). doi:10.1021/ic50044a017

    CAS  Google Scholar 

  31. Allcock, H.R., Kugel, R.L., Valan, K.J.: Phosphonitrilic compounds.6. High molecular weight poly(alkoxy- and arylox-phosphazenes). Inorg. Chem. 5(10), 1709 (1966). doi:10.1021/ic50044a016

    CAS  Google Scholar 

  32. Gettleman, L., Farris, C.L., Rawls, H.R., LeBouef, R.: Soft and firm fluoroalkoxyphosphazene rubber denture linear for a composite denture (1984)

    Google Scholar 

  33. Wade, C.W.R., Gourlay, S., Rice, R., Hegyeli, A., Singler, R., White, J.: Biocompatibility of Eight Poly(organophosphazenes). In: Carraher, C.E., Sheats, J.E., Pittman, C.U. (eds.) Organometallic Polymers, p. 298. Academic Press, New York (1978)

    Google Scholar 

  34. Welle, A., Grunze, M., Tur, D.: Plasma protein adsorption and platelet adhesion on poly bis(trifluoroethoxy)phosphazene and reference material surfaces. J. Colloid Interface Sci. 197(2), 263–274 (1998). doi:10.1006/jcis.1997.5238

    CAS  Google Scholar 

  35. Bostman, O., Pihlajamaki, H.: Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials 21(24), 2615–2621 (2000). doi:10.1016/s0142-9612(00)00129-0

    CAS  Google Scholar 

  36. Allcock, H.R., Fuller, T.J., Mack, D.P., Matsumura, K., Smeltz, K.M.: Synthesis of poly [(amino acid alkyl ester)phosphazenes]. Macromolecules 10(4), 824–830 (1977). doi:10.1021/ma60058a020

    CAS  Google Scholar 

  37. Allcock, H.R., Fuller, T.J., Matsumura, K.: Hydrolysis pathways for aminophosphazenes. Inorg. Chem. 21(2), 515–521 (1982). doi:10.1021/ic00132a009

    CAS  Google Scholar 

  38. Allcock, H.R., Pucher, S.R., Scopelianos, A.G.: Poly (amino-acid-ester)phosphazenes—synthesis, crystallinity, and hydrolytic sensitivity in solution and the solid-state. Macromolecules 27(5), 1071–1075 (1994). doi:10.1021/ma00083a001

    CAS  Google Scholar 

  39. Allcock, H.R., Pucher, S.R., Scopelianos, A.G.: Poly (amino acid ester)phosphazenes as substrates for the controlled-release of small molecules. Biomaterials 15(8), 563–569 (1994). doi:10.1016/0142-9612(94)90205-4

    CAS  Google Scholar 

  40. Hindenlang, M.D., Soudakov, A.A., Imler, G.H., Laurencin, C.T., Nair, L.S., Allcock, H.R.: Iodine-containing radio-opaque polyphosphazenes. Polym. Chem. 1(9), 1467–1474 (2010). doi:10.1039/c0py00126k

    CAS  Google Scholar 

  41. Deng, M., Nair, L.S., Nukavarapu, S.R., Jiang, T., Kanner, W.A., Li, X.D., Kumbar, S.G., Weikel, A.L., Krogman, N.R., Allcock, H.R., Laurencin, C.T.: Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering. Biomaterials 31(18), 4898–4908 (2010). doi:10.1016/j.biomaterials.2010.02.058

    CAS  Google Scholar 

  42. Deng, M., Kumbar, S.G., Nair, L.S., Weikel, A.L., Allcock, H.R., Laurencin, C.T.: Biomimetic structures: biological implications of dipeptide-substituted polyphosphazene-polyester blend nanofiber matrices for load-bearing bone regeneration. Adv. Funct. Mater. 21(14), 2641–2651 (2011). doi:10.1002/adfm.201100275

    CAS  Google Scholar 

  43. Kim, J.I., Jun, Y.J., Seong, J.Y., Jun, M.J., Sohn, Y.S.: Synthesis and characterization of nanosized poly (organophosphazenes) with methoxy-poly(ethylene glycol) and dipeptide ethyl esters as side groups. Polymer 45(21), 7083–7089 (2004). doi:10.1016/j.polymer.2004.08.031

    CAS  Google Scholar 

  44. Weikel, A.L., Krogman, N.R., Nguyen, N.Q., Nair, L.S., Laurencin, C.T., Allcock, H.R.: Polyphosphazenes that contain dipeptide side groups: synthesis, characterization, and sensitivity to hydrolysis. Macromolecules 42(3), 636–639 (2009). doi:10.1021/ma802423c

    CAS  Google Scholar 

  45. Crommen, J.H.L., Schacht, E.H., Mense, E.H.G.: Biodegradable polymers.1. Synthesis of hydrolysis-sensitive poly (organo)phosphazenes. Biomaterials 13(8), 511–520 (1992). doi:10.1016/0142-9612(92)90102-t

    CAS  Google Scholar 

  46. Crommen, J.H.L., Schacht, E.H., Mense, E.H.G.: Biodegradable polymers. 2. Degradation characteristics of hydrolysis-sensitive poly (organo)phosphazenes. Biomaterials 13(9), 601–611 (1992). doi:10.1016/0142-9612(92)90028-m

    CAS  Google Scholar 

  47. Schacht, E., Vandorpe, J., Dejardin, S., Lemmouchi, Y., Seymour, L.: Biomedical applications of degradable polyphosphazenes. Biotechnol. Bioeng. 52(1), 102–108 (1996). doi:10.1002/(sici)1097-0290(19961005)52:1<102:aid-bit10>3.0.co;2-q

    CAS  Google Scholar 

  48. Allcock, H.R., Scopelianos, A.G.: Synthesis of sugar-substituted cyclic and polymeric phosphazenes and their oxidation, reduction and acetylation reactions. Macromolecules 16(5), 715–719 (1983). doi:10.1021/ma00239a001

    CAS  Google Scholar 

  49. Allcock, H.R., Singh, A., Ambrosio, A.M.A., Laredo, W.R.: Tyrosine-bearing polyphosphazenes. Biomacromolecules 4(6), 1646–1653 (2003). doi:10.1021/bm030027i

    CAS  Google Scholar 

  50. Krogman, N.R., Hindenlang, M.D., Nair, L.S., Laurencin, C.T., Allcock, H.R.: Synthesis of purine- and pyrimidine-containing polyphosphazenes: physical properties and hydrolytic behavior. Macromolecules 41(22), 8467–8472 (2008). doi:10.1021/ma8008417

    CAS  Google Scholar 

  51. Krogman, N.R., Weikel, A.L., Nguyen, N.Q., Nair, L.S., Laurencin, C.T., Allcock, H.R.: Synthesis and characterization of new biomedical polymers: serine- and threonine-containing polyphosphazenes and poly(L-lactic acid) grafted copolymers. Macromolecules 41(21), 7824–7828 (2008). doi:10.1021/ma801961m

    CAS  Google Scholar 

  52. Morozowich, N.L., Weikel, A.L., Nichol, J.L., Chen, C., Nair, L.S., Laurencin, C.T., Allcock, H.R.: Polyphosphazenes containing vitamin substituents: synthesis, characterization, and hydrolytic sensitivity. Macromolecules 44(6), 1355–1364 (2011). doi:10.1021/ma1027406

    CAS  Google Scholar 

  53. Weikel, A.L., Owens, S.G., Fushimi, T., Allcock, H.R.: Synthesis and characterization of methionine- and cysteine-substituted phosphazenes. Macromolecules 43(12), 5205–5210 (2010). doi:10.1021/ma1007013

    CAS  Google Scholar 

  54. Weikel, A.L., Owens, S.G., Morozowich, N.L., Deng, M., Nair, L.S., Laurencin, C.T., Allcock, H.R.: Miscibility of choline-substituted polyphosphazenes with PLGA and osteoblast activity on resulting blends. Biomaterials 31(33), 8507–8515 (2010). doi:10.1016/j.biomaterials.2010.07.094

    CAS  Google Scholar 

  55. Ahn, S., Ahn, S.W., Song, S.C.: Thermosensitive amphiphilic polyphosphazenes and their interaction with ionic surfactants. Colloids Surf. A 330(2–3), 184–192 (2008). doi:10.1016/j.colsurfa.2008.07.059

    CAS  Google Scholar 

  56. Cho, Y.W., An, S.W., Song, S.C.: Effect of inorganic and organic salts on the thermogelling behavior of poly(organophosphazenes). Macromol. Chem. Phys. 207(4), 412–418 (2006). doi:10.1002/macp.200500483

    CAS  Google Scholar 

  57. Kang, G.D., Heo, J.Y., Jung, S.B., Song, S.C.: Controlling the thermosensitive gelation properties of poly(organophosphazenes) by blending. Macromol. Rapid Commun. 26(20), 1615–1618 (2005). doi:10.1002/marc.200500472

    CAS  Google Scholar 

  58. Lee, S.B., Song, S.C., Jin, J.I., Sohn, Y.S.: A new class of biodegradable thermosensitive polymers. 2. Hydrolytic properties and salt effect on the lower critical solution temperature of poly(organophosphazenes) with methoxypoly(ethylene glycol) and amino acid esters as side groups. Macromolecules 32(23), 7820–7827 (1999). doi:10.1021/ma990645n

    CAS  Google Scholar 

  59. Lee, S.B., Song, S.C., Jin, J.I., Sohn, Y.S.: Thermosensitive cyclotriphosphazenes. J. Am. Chem. Soc. 122(34), 8315–8316 (2000). doi:10.1021/ja001542j

    CAS  Google Scholar 

  60. Lee, B.H., Lee, Y.M., Sohn, Y.S., Song, S.C.: Thermosensitive and hydrolysis-sensitive poly(organophosphazenes). Polym. Int. 51(7), 658–660 (2002). doi:10.1002/pi.1019

    CAS  Google Scholar 

  61. Lee, B.H., Lee, Y.M., Sohn, Y.S., Song, S.C.: A thermosensitive poly(organophosphazene) gel. Macromolecules 35(10), 3876–3879 (2002). doi:10.1021/ma012093q

    CAS  Google Scholar 

  62. Song, S.C., Lee, S.B., Jin, J.I., Sohn, Y.S.: A new class of biodegradable thermosensitive polymers. I. Synthesis and characterization of poly(organophosphazenes) with methoxy-poly(ethylene glycol) and amino acid esters as side groups. Macromolecules 32(7), 2188–2193 (1999). doi:10.1021/ma981190p

    CAS  Google Scholar 

  63. Chun, C., Lee, S.M., Kim, C.W., Hong, K.Y., Kim, S.Y., Yang, H.K., Song, S.C.: Doxorubicin-polyphosphazene conjugate hydrogels for locally controlled delivery of cancer therapeutics. Biomaterials 30(27), 4752–4762 (2009). doi:10.1016/j.biomaterials.2009.05.031

    CAS  Google Scholar 

  64. Chun, C., Lee, S.M., Kim, S.Y., Yang, H.K., Song, S.C.: Thermosensitive poly(organophosphazene)-paclitaxel conjugate gels for antitumor applications. Biomaterials 30(12), 2349–2360 (2009). doi:10.1016/j.biomaterials.2008.12.083

    CAS  Google Scholar 

  65. Chun, C., Lim, H.J., Hong, K.Y., Park, K.H., Song, S.C.: The use of injectable, thermosensitive poly(organophosphazene)-RGD conjugates for the enhancement of mesenchymal stem cell osteogenic differentiation. Biomaterials 30(31), 6295–6308 (2009). doi:10.1016/j.biomaterials.2009.08.011

    CAS  Google Scholar 

  66. Lee, S.M., Chun, C.J., Heo, J.Y., Song, S.C.: Injectable and Thermosensitive Poly(organophosphazene) Hydrogels for a 5-Fluorouracil Delivery. J. Appl. Polym. Sci. 113(6), 3831–3839 (2009). doi:10.1002/app.30397

    CAS  Google Scholar 

  67. Park, M.R., Chun, C., Ahn, S.W., Ki, M.H., Cho, C.S., Song, S.C.: Cationic and thermosensitive protamine conjugated gels for enhancing sustained human growth hormone delivery. Biomaterials 31(6), 1349–1359 (2010). doi:10.1016/j.biomaterials.2009.10.022

    CAS  Google Scholar 

  68. Lee, B.H., Song, S.C.: Synthesis and characterization of biodegradable thermosensitive poly(organophosphazene) gels. Macromolecules 37(12), 4533–4537 (2004). doi:10.1021/ma0305838

    CAS  Google Scholar 

  69. Park, M.R., Chun, C.J., Ahn, S.W., Ki, M.H., Cho, C.S., Song, S.C.: Sustained delivery of human growth hormone using a polyelectrolyte complex-loaded thermosensitive polyphosphazene hydrogel. J. Controlled Release 147(3), 359–367 (2010). doi:10.1016/j.jconrel.2010.07.126

    CAS  Google Scholar 

  70. Seong, J.Y., Jun, Y.J., Jeong, B., Sohn, Y.S.: New thermogelling poly (organophosphazenes) with methoxypoly(ethylene glycol) and oligopeptide as side groups. Polymer 46(14), 5075–5081 (2005). doi:10.1016/j.polymer.2005.04.024

    CAS  Google Scholar 

  71. Ahn, S., Ahn, S.W., Song, S.C.: Polymer structure-dependent ion interaction studied by amphiphilic nonionic poly(organophosphazenes). J. Polym. Sci., Part B: Polym. Phys. 46(19), 2022–2034 (2008). doi:10.1002/polb.21537

    CAS  Google Scholar 

  72. Jiang, H.L., Kim, Y.K., Lee, S.M., Park, M.R., Kim, E.M., Jin, Y.M., Arote, R., Jeong, H.J., Song, S.C., Cho, M.H., Cho, C.S.: Galactosylated chitosan-g-PEI/DNA complexes-loaded poly(organophosphazene) hydrogel as a hepatocyte targeting gene delivery system. Arch. Pharm. Res. 33(4), 551–556 (2010). doi:10.1007/s12272-010-0409-9

    CAS  Google Scholar 

  73. Park, K.H., Song, S.C.: A thermo-sensitive poly(organophosphazene) hydrogel used as an extracellular matrix for artificial pancreas. J. Biomater. Sci. Polym. Ed. 16(11), 1421–1431 (2005). doi:10.1163/156856205774472272

    CAS  Google Scholar 

  74. Park, M.R., Cho, C.S., Song, S.C.: In vitro and in vivo degradation behaviors of thermosensitive poly(organophosphazene) hydrogels. Polym. Degrad. Stab. 95(6), 935–944 (2010). doi:10.1016/j.polymdegradstab.2010.03.024

    CAS  Google Scholar 

  75. Ahn, S., Ahn, S.W., Song, S.C.: Thermothickening modification of the poly(ethylene glycol) and amino acid ester grafted polyphosphazenes by monomethyl end-capped poly(ethylene glycol) addition. Colloids Surf. A 333(1–3), 82–90 (2009). doi:10.1016/j.colsurfa.2008.09.045

    CAS  Google Scholar 

  76. Al-Abd, A.M., Hong, K.Y., Song, S.C., Kuh, H.J.: Pharmacokinetics of doxorubicin after intratumoral injection using a thermosensitive hydrogel in tumor-bearing mice. J. Controlled Release 142(1), 101–107 (2010). doi:10.1016/j.jconrel.2009.10.003

    CAS  Google Scholar 

  77. Cho, J.K., Hong, K.Y., Park, J.W., Yang, H.K., Song, S.C.: Injectable delivery system of 2-methoxyestradiol for breast cancer therapy using biodegradable thermosensitive poly(organophosphazene) hydrogel. J. Drug Target. 19(4), 270–280 (2011). doi:10.3109/1061186x.2010.499461

    CAS  Google Scholar 

  78. Cho, J.K., Park, J.W., Song, S.C.: Injectable and biodegradable poly(organophosphazene) gel containing silibinin: its physicochemical properties and anticancer activity. J. Pharm. Sci. 101(7), 2382–2391 (2012). doi:10.1002/jps.23137

    CAS  Google Scholar 

  79. Il Kim, J., Kim, B., Chun, C., Lee, S.H., Song, S.C.: MRI-monitored long-term therapeutic hydrogel system for brain tumors without surgical resection. Biomaterials 33(19), 4836–4842 (2012). doi:10.1016/j.biomaterials.2012.03.048

    Google Scholar 

  80. Kang, G.D., Cheon, S.H., Song, S.C.: Controlled release of doxorubicin from thermosensitive poly(organophosphazene) hydrogels. Int. J. Pharm. 319(1–2), 29–36 (2006). doi:10.1016/j.ijpharm.2006.03.032

    CAS  Google Scholar 

  81. Kim, J.I., Chun, C., Kim, B., Hong, J.M., Cho, J.K., Lee, S.H., Song, S.C.: Thermosensitive/magnetic poly(organophosphazene) hydrogel as a long-term magnetic resonance contrast platform. Biomaterials 33(1), 218–224 (2012). doi:10.1016/j.biomaterials.2011.09.033

    CAS  Google Scholar 

  82. Kim, J.I., Lee, B.S., Chun, C., Cho, J.K., Kim, S.Y., Song, S.C.: Long-term theranostic hydrogel system for solid tumors. Biomaterials 33(7), 2251–2259 (2012). doi:10.1016/j.biomaterials.2011.11.083

    CAS  Google Scholar 

  83. Kim, J.H., Lee, J.H., Kim, K.S., Na, K., Song, S.C., Lee, J., Kuh, H.J.: Intratumoral delivery of paclitaxel using a thermosensitive hydrogel in human tumor xenografts. Arch. Pharm. Res. 36(1), 94–101 (2013). doi:10.1007/s12272-013-0013-x

    CAS  Google Scholar 

  84. Kwak, M.K., Hur, K., Yu, J.E., Han, T.S., Yanagihara, K., Kim, W.H., Lee, S.M., Song, S.C., Yang, H.K.: Suppression of in vivo tumor growth by using a biodegradable thermosensitive hydrogel polymer containing chemotherapeutic agent. Invest. New Drugs 28(3), 284–290 (2010). doi:10.1007/s10637-009-9253-5

    CAS  Google Scholar 

  85. Park, M.R., Seo, B.B., Song, S.C.: Dual ionic interaction system based on polyelectrolyte complex and ionic, injectable, and thermosensitive hydrogel for sustained release of human growth hormone. Biomaterials 34(4), 1327–1336 (2013). doi:10.1016/j.biomaterials.2012.10.033

    CAS  Google Scholar 

  86. Seo, B.B., Park, M.R., Chun, C., Lee, J.Y., Song, S.C.: The biological efficiency and bioavailability of human growth hormone delivered using injectable, ionic, thermosensitive poly(organophosphazene)-polyethylenimine conjugate hydrogels. Biomaterials 32(32), 8271–8280 (2011). doi:10.1016/j.biomaterials.2011.07.033

    CAS  Google Scholar 

  87. Yu, J., Lee, H.J., Hur, K., Kwak, M.K., Han, T.S., Kim, W.H., Song, S.C., Yanagihara, K., Yang, H.K.: The antitumor effect of a thermosensitive polymeric hydrogel containing paclitaxel in a peritoneal carcinomatosis model. Invest. New Drugs 30(1), 1–7 (2012). doi:10.1007/s10637-010-9499-y

    Google Scholar 

  88. Ahn, S., Monge, E.C., Song, S.C.: Ion and pH effect on the lower critical solution temperature phase behavior in neutral and acidic poly(organophosphazene) counterparts. Langmuir 25(4), 2407–2418 (2009). doi:10.1021/la802815u

    CAS  Google Scholar 

  89. Cho, J.K., Lee, S.M., Kim, C.W., Song, S.C.: Synthesis and characterization of biodegradable thermosensitive neutral and acidic poly(organophosphazene) gels bearing carboxylic acid group. J. Polym. Res. 18(4), 701–713 (2011). doi:10.1007/s10965-010-9466-5

    CAS  Google Scholar 

  90. Lee, B.B., Song, S.C.: Synthesis and characterization of thermosensitive poly(organophosphazene) gels with an amino functional group. J. Appl. Polym. Sci. 120(2), 998–1005 (2011). doi:10.1002/app.33181

    CAS  Google Scholar 

  91. Allcock, H.R.: Chemistry and applications of polyphosphazenes. Wiley, New York (2003)

    Google Scholar 

  92. Chen, C., Liu, X., Tian, Z.C., Allcock, H.R.: Trichloroethoxy-substituted polyphosphazenes: synthesis, characterization, and properties. Macromolecules 45(22), 9085–9091 (2012). doi:10.1021/ma301822m

    CAS  Google Scholar 

  93. Liu, X., Breon, J.P., Chen, C., Allcock, H.R.: Substituent Exchange Reactions of Linear Oligomeric Aryloxyphosphazenes with Sodium 2,2,2-Trifluoroethoxide. Inorg. Chem. 51(21), 11910–11916 (2012). doi:10.1021/ic301808v

    CAS  Google Scholar 

  94. Liu, X., Breon, J.P., Chen, C., Allcock, H.R.: Substituent exchange reactions with high polymeric organophosphazenes. Macromolecules 45(22), 9100–9109 (2012). doi:10.1021/ma302087a

    CAS  Google Scholar 

  95. Liu, X., Tian, Z.C., Chen, C., Allcock, H.R.: Synthesis and Characterization of Brush-Shaped Hybrid Inorganic/Organic Polymers Based on Polyphosphazenes. Macromolecules 45(3), 1417–1426 (2012). doi:10.1021/ma202587z

    CAS  Google Scholar 

  96. Tian, Z.C., Liu, X., Chen, C., Allcock, H.R.: Synthesis and micellar behavior of novel amphiphilic poly bis(trifluoroethoxy)phosphazene -co-poly (dimethylamino)ethyl methacrylate block copolymers. Macromolecules 45(5), 2502–2508 (2012). doi:10.1021/ma300139z

    CAS  Google Scholar 

  97. Chen, C., Hess, A.R., Jones, A.R., Liu, X., Barber, G.D., Mallouk, T.E., Allcock, H.R.: Synthesis of new polyelectrolytes via backbone quaternization of poly(aryloxy- and alkoxyphosphazenes) and their small molecule counterparts. Macromolecules 45(3), 1182–1189 (2012). doi:10.1021/ma202619j

    CAS  Google Scholar 

  98. Liu, X., Zhang, H., Tian, Z.C., Sen, A., Allcock, H.R.: Preparation of quaternized organic-inorganic hybrid brush polyphosphazene-co-poly 2-(dimethylamino)ethyl methacrylate electrospun fibers and their antibacterial properties. Polym. Chem. 3(8), 2082–2091 (2012). doi:10.1039/c2py20170d

    CAS  Google Scholar 

  99. Allcock, H.R., Morozowich, N.L.: Bioerodible polyphosphazenes and their medical potential. Polymer Chemistry 3(3), 578–590 (2012). doi:10.1039/c1py00468a

    CAS  Google Scholar 

  100. Rose, S.H.: Synthesis of phosphonitrilic fluoroelastomers. Journal of Polymer Science Part B-Polymer Letters 6(12PB), 837 (1968). doi:10.1002/pol.1968.110061203

    CAS  Google Scholar 

  101. Tate, D.P.: Polyphosphazene elastomers. J. Polym. Sci., Part C: Polym. Symp. 48, 33–45 (1974)

    CAS  Google Scholar 

  102. Liu, X., Tian, Z.C., Chen, C., Allcock, H.R.: UV-cleavable unimolecular micelles: synthesis and characterization toward photocontrolled drug release carriers. Polym. Chem. 4(4), 1115–1125 (2013). doi:10.1039/c2py20825c

    CAS  Google Scholar 

  103. Cho, Y.W., Lee, J.R., Song, S.C.: Novel thermosensitive 5-fluorouracil-cyclotriphosphazene conjugates: synthesis, thermosensitivity, degradability, and in vitro antitumor activity. Bioconjug. Chem. 16(6), 1529–1535 (2005). doi:10.1021/bc049697u

    CAS  Google Scholar 

  104. Cho, Y.W., Choi, M., Lee, K., Song, S.C.: Cyclotriphosphazene-Pt-DACH conjugates with dipeptide spacers for drug delivery systems. J. Bioact. Compatible Polym. 25(3), 274–291 (2010). doi:10.1177/0883911509356377

    CAS  Google Scholar 

  105. Lee, S.B., Song, S.C., Jin, J.I., Sohn, Y.S.: Structural and thermosensitive properties of cyclotriphosphazenes with poly(ethylene glycol) and amino acid esters as side groups. Macromolecules 34(21), 7565–7569 (2001). doi:10.1021/ma010648b

    CAS  Google Scholar 

  106. Song, S.C., Lee, S.B., Lee, B.H., Ha, H.W., Lee, K.T., Sohn, Y.S.: Synthesis and antitumor activity of novel thermosensitive platinum(II)-cyclotriphosphazene conjugates. J. Controlled Release 90(3), 303–311 (2003). doi:10.1016/s0168-3659(03)00199-8

    CAS  Google Scholar 

  107. Allcock, H.R., Dudley, G.K.: Lower critical solubility temperature study of alkyl ether based polyphosphazenes. Macromolecules 29(4), 1313–1319 (1996). doi:10.1021/ma951129+

    CAS  Google Scholar 

  108. Allcock, H.R., Pucher, S.R., Turner, M.L., Fitzpatrick, R.J.: Poly(organophosphazenes) with poly(alkyl ether) side groups—a study of their water solubility and the swelling characteristics of their hydrogels. Macromolecules 25(21), 5573–5577 (1992). doi:10.1021/ma00047a002

    CAS  Google Scholar 

  109. Allcock, H.R., Pucher, S.R., Visscher, K.B.: Activity of urea amidohydrolase immobilized within poly di(methoxyethoxyethoxy)phosphazene hydrogels. Biomaterials 15(7), 502–506 (1994). doi:10.1016/0142-9612(94)90015-9

    CAS  Google Scholar 

  110. Zhang, J.X., Qiu, L.Y., Zhu, K.J., Jin, Y.: Thermosensitive micelles self-assembled by novel N-isopropylacrylamide oligomer grafted polyphosphazene. Macromol. Rapid Commun. 25(17), 1563–1567 (2004). doi:10.1002/marc.200400180

    CAS  Google Scholar 

  111. Zhang, J.X., Qiu, L.Y., Wu, X.L., Jin, Y., Zu, K.J.: Temperature-triggered nanosphere formation through self-assembly of amphiphilic polyphosphazene. Macromol. Chem. Phys. 207(14), 1289–1296 (2006). doi:10.1002/macp.200600139

    CAS  Google Scholar 

  112. Zhang, R.X., Li, X.J., Qiu, L.Y., Li, X.H., Yan, M.Q., Jin, Y., Zhu, K.J.: Indomethacin-loaded polymeric nanocarriers based on amphiphilic polyphosphazenes with poly (N-isopropylacrylamide) and ethyl tryptophan as side groups: Preparation, in vitro and in vivo evaluation. J. Controlled Release 116(3), 322–329 (2006). doi:10.1016/j.jconrel.2006.09.013

    CAS  Google Scholar 

  113. Lee, S.B., Song, S.C.: Hydrolysis-improved thermosensitive polyorganophosphazenes with alpha-amino-omega-methoxy-poly(ethylene glycol) and amino acid esters as side groups. Polym. Int. 54(9), 1225–1232 (2005). doi:10.1002/pi.1702

    CAS  Google Scholar 

  114. Lee, S.B., Song, S.C., Jin, J.I., Sohn, Y.S.: Surfactant effect on the lower critical solution temperature of poly(organophosphazenes) with methoxy-poly(ethylene glycol) and amino acid esters as side groups. Colloid Polym. Sci. 278(11), 1097–1102 (2000). doi:10.1007/s003960000368

    CAS  Google Scholar 

  115. Lee, S.B., Song, S.C., Jin, J.I., Sohn, Y.S.: Solvent effect on the lower critical solution temperature of biodegradable thermosensitive poly(organophosphazenes). Polym. Bull. 45(4–5), 389–396 (2000). doi:10.1007/s002890070012

    CAS  Google Scholar 

  116. Allcock, H.R., Fuller, T.J.: Phosphazene high polymers with steroidal side groups. Macromolecules 13(6), 1338–1345 (1980). doi:10.1021/ma60078a003

    CAS  Google Scholar 

  117. Allcock, H.R., Pucher, S.R.: Polyphosphazenes with glucosyl and methylamino, trifluoroethoxy, phenoxy, or (methoxyethoxy)ethoxy side groups. Macromolecules 24(1), 23–34 (1991). doi:10.1021/ma00001a005

    CAS  Google Scholar 

  118. Andrianov, A.K., Marin, A.: Degradation of polyaminophosphazenes: effects of hydrolytic environment and polymer processing. Biomacromolecules 7(5), 1581–1586 (2006). doi:10.1021/bm050959k

    CAS  Google Scholar 

  119. Andrianov, A.K., Marin, A., Peterson, P.: Water-soluble biodegradable polyphosphazenes containing N-ethylpyrrolidone groups. Macromolecules 38(19), 7972–7976 (2005). doi:10.1021/ma0509309

    CAS  Google Scholar 

  120. Crommen, J., Vandorpe, J., Schacht, E.: Degradable polyphosphazenes for biomedical applications. J. Controlled Release 24(1–3), 167–180 (1993). doi:10.1016/0168-3659(93)90176-6

    CAS  Google Scholar 

  121. Cui, Y.J., Zhao, M., Tang, X.Z., Luo, Y.P.: Novel micro-crosslinked poly(organophosphazenes) with improved mechanical properties and controllable degradation rate as potential biodegradable matrix. Biomaterials 25(3), 451–457 (2004). doi:10.1016/s0142-9612(03)00532-5

    CAS  Google Scholar 

  122. Qiu, L.Y., Zhu, K.J.: Novel biodegradable polyphosphazenes containing glycine ethyl ester and benzyl ester of amino acethydroxamic acid as cosubstituents: Syntheses, characterization, and degradation properties. J. Appl. Polym. Sci. 77(13), 2987–2995 (2000). doi:10.1002/1097-4628(20000923)77:13<2987:aid-app24>3.0.co;2-f

    CAS  Google Scholar 

  123. Singh, A., Krogman, N.R., Sethuraman, S., Nair, L.S., Sturgeon, J.L., Brown, P.W., Laurencin, C.T., Allcock, H.R.: Effect of side group chemistry on the properties of biodegradable L-alanine cosubstituted polyphosphazenes. Biomacromolecules 7(3), 914–918 (2006). doi:10.1021/bm050752r

    CAS  Google Scholar 

  124. Tian, Z.C., Zhang, Y.F., Liu, X., Chen, C., Guiltinan, M.J., Allcock, H.R.: Biodegradable polyphosphazenes containing antibiotics: synthesis, characterization, and hydrolytic release behavior. Polymer Chemistry 4(6), 1826–1835 (2013). doi:10.1039/c2py21064a

    CAS  Google Scholar 

  125. Yuan, W.Z., Song, Q., Zhu, L., Huang, X.B., Zheng, S.X., Tang, X.Z.: Asymmetric penta-armed poly(epsilon-caprolactone)s with short-chain phosphazene core: synthesis, characterization, and in vitro degradation. Polym. Int. 54(9), 1262–1267 (2005). doi:10.1002/pi.1840

    CAS  Google Scholar 

  126. Singla, A.K., Garg, A., Aggarwal, D.: Paclitaxel and its formulations. Int. J. Pharm. 235(1–2), 179–192 (2002). doi:10.1016/s0378-5173(01)00986-3

    CAS  Google Scholar 

  127. Maeda, H., Wu, J., Sawa, T., Matsumura, Y., Hori, K.: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Controlled Release 65(1–2), 271–284 (2000). doi:10.1016/s0168-3659(99)00248-5

    CAS  Google Scholar 

  128. Modok, S., Mellor, H.R., Callaghan, R.: Modulation of multidrug resistance efflux pump activity to overcome chemoresistance in cancer. Curr. Opin. Pharmacol. 6(4), 350–354 (2006). doi:10.0116/j.coph.2006.01.009

    CAS  Google Scholar 

  129. Kwak, H.H., Shim, W.S., Choi, M.K., Son, M.K., Kim, Y.J., Yang, H.C., Kim, T.H., Lee, G.I., Kim, B.M., Kang, S.H., Shim, C.K.: Development of a sustained-release recombinant human growth hormone formulation. J. Controlled Release 137(2), 160–165 (2009). doi:10.1016/j.jconrel.2009.03.014

    CAS  Google Scholar 

  130. Kim, H.K., Chung, H.J., Park, T.G.: Biodegradable polymeric microspheres with “open/closed” pores for sustained release of human growth hormone. J. Controlled Release 112(2), 167–174 (2006). doi:10.1016/j.jconrel.2006.02.004

    CAS  Google Scholar 

  131. Kim, H.K., Park, T.G.: Microencapsulation of human growth hormone within biodegradable polyester microspheres: Protein aggregation stability and incomplete release mechanism. Biotechnol. Bioeng. 65(6), 659–667 (1999). doi:10.1002/(sici)1097-0290(19991220)65:6<659:aid-bit6>3.0.co;2-9

    CAS  Google Scholar 

  132. Kim, Y.M., Park, M.R., Song, S.C.: Injectable polyplex hydrogel for localized and long-term delivery of siRNA. ACS Nano 6(7), 5757–5766 (2012). doi:10.1021/nn300842a

    CAS  Google Scholar 

  133. Park, K.H., Song, S.C.: Morphology of spheroidal hepatocytes within injectable, biodegradable, and thermosensitive poly(organophosphazene) hydrogel as cell delivery vehicle. J. Biosci. Bioeng. 101(3), 238–242 (2006). doi:10.1263/jbb.101.238

    CAS  Google Scholar 

  134. Potta, T., Chun, C., Song, S.C.: Chemically crosslinkable thermosensitive polyphosphazene gels as injectable materials for biomedical applications. Biomaterials 30(31), 6178–6192 (2009). doi:10.1016/j.biomaterials.2009.08.015

    CAS  Google Scholar 

  135. Potta, T., Chun, C., Song, S.C.: Injectable, dual cross-linkable polyphosphazene blend hydrogels. Biomaterials 31(32), 8107–8120 (2010). doi:10.1016/j.biomaterials.2010.07.029

    CAS  Google Scholar 

  136. Potta, T., Chun, C., Song, S.C.: Dual cross-linking systems of functionally photo-cross-linkable and thermoresponsive polyphosphazene hydrogels for biomedical applications. Biomacromolecules 11(7), 1741–1753 (2010). doi:10.1021/bm100197y

    CAS  Google Scholar 

  137. Potta, T., Chun, C., Song, S.C.: Controlling the degradation rate of thermoresponsive photo-cross-linked poly(organophosphazene) hydrogels with compositions of depsipeptide and PEG chain lengths. Polym. Degrad. Stab. 96(7), 1261–1270 (2011). doi:10.1016/j.polymdegradstab.2011.04.010

    CAS  Google Scholar 

  138. Potta, T., Chun, C., Song, S.C.: Rapid photocrosslinkable thermoresponsive injectable polyphosphazene hydrogels. Macromol. Rapid Commun. 31(24), 2133–2139 (2010). doi:10.1002/marc.201000350

    CAS  Google Scholar 

  139. Potta, T., Chun, C., Song, S.C.: Design of polyphosphazene hydrogels with improved structural properties by use of star-shaped multithiol crosslinkers. Macromol. Biosci. 11(5), 689–699 (2011). doi:10.1002/mabi.201000438

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Liu, X. (2015). Biodegradable Thermogelling Poly(Organophosphazenes) and Their Potential Biomedical Applications. In: Loh, X. (eds) In-Situ Gelling Polymers. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-287-152-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-152-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-151-0

  • Online ISBN: 978-981-287-152-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics