Skip to main content

Dynamic Effects of Piezoelectric Patch Actuators on Vibrational Response of Non-deterministic Structures: Modelling and Simulations

  • Chapter
  • First Online:
Recent Trends in Physics of Material Science and Technology

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 204))

  • 1500 Accesses

Abstract

Many engineering systems such as aircraft and automotive are considered built-up structures, fabricated from components that are classified as deterministic subsystems (DS) and non-deterministic subsystems (Non-DS). The response of Non-DS is sensitive to minor details of material properties, geometry, connections and damping distribution; therefore create problems in vibration control. Hence, the response of Non-DS is estimated using statistical modelling technique such as statistical energy analysis (SEA), in which any external input to the subsystem must be represented in terms of power input. In this research, ensemble average of power delivered by a piezoelectric (PZT) patch actuator to a simply-supported plate when subjected to structural uncertainties is studied using Lagrangian method and obtained by Monte-Carlo simulation. The effects of size and location of the PZT patch actuators on the power delivered to the plate are investigated. It is found that changing the patch location on the structure will not affect the average power supplied by the patch while changing the patch size will change the power magnitude proportionally but with some variations at higher frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fahy F, Gardonio P (2007) Sound and structural vibration—radiation, transmission and response, 2nd edn. Academic Press, Amsterdam

    Google Scholar 

  2. Muthalif AGA, Langley RS (2012) Active control of high-frequency vibration: optimization using the hybrid modelling method. J Sound Vib 331:969–2983

    Article  Google Scholar 

  3. Lyon RH (1975) Statistical energy analysis of dynamical systems: theory and applications. MIT Press, Cambridge

    Google Scholar 

  4. Woodhouse J (1981) An approach to the theoretical background of statistical energy analysis applied to structural vibration. J Acoust Soc Am 69(6):1695–1709

    Article  ADS  MATH  Google Scholar 

  5. Langley RS, Bercin AN (1994) Wave intensity analysis of high frequency vibrations. Phil Trans R Soc A: Math Phys Eng Sci 1681(346):489–499

    Article  ADS  Google Scholar 

  6. Gardonio P, Brennan MJ (2004) Mobility and impedance methods in structural dynamics advanced applications in acoustics, noise and vibration: chapter 9. Spon Press, London

    Google Scholar 

  7. Preumont A (2011) Vibration control of active structures: an introduction, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  8. Muthalif AGA (2010) Investigating the average power supplied by a piezoelectric patch actuator when attached to random structures (Application to Vibration Control). CLA presentation of high impact research proposal Kuala Lumpur, Malaysia

    Google Scholar 

  9. Jalili N (2010) Piezoelectric based vibration control. Springer, New York

    Book  Google Scholar 

  10. Weaver W, Timoshenko SP, Young DH (1990) Vibration problems in engineering, 5th edn. Wiley-Interscience, New York

    Google Scholar 

  11. Aoki Y, Gardonio P, Elliott SJ (2006) Strain transducers for active control-lumped parameter model. ISVR technical memorandum No 970ISVR University of Southampton, UK

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asan G. A. Muthalif .

Editor information

Editors and Affiliations

Appendix

Appendix

Recall that the kinetic energy and potential energy of the system are:

$$\begin{aligned} U & = \frac{D}{2}\mathop {\iint }\nolimits \left\{ {\left( {\frac{{\partial^{2} w}}{{\partial x^{2} }} + \frac{{\partial^{2} w}}{{\partial y^{2} }}} \right)^{2} - 2(1 - v)\left[ {\left( {\frac{{\partial^{2} w}}{{\partial x^{2} }}\frac{{\partial^{2} w}}{{\partial y^{2} }}} \right) - \left( {\frac{{\partial^{2} w}}{\partial x\partial y}} \right)^{2} } \right]} \right\}dA \\ & \quad + \frac{1}{2}\mathop {\iint }\nolimits D_{1} (x,y)\left\{ {\left( {\frac{{\partial^{2} w}}{{\partial x^{2} }} + \frac{{\partial^{2} w}}{{\partial y^{2} }}} \right)^{2} - 2(1 - v)\left[ {\left( {\frac{{\partial^{2} w}}{{\partial x^{2} }}\frac{{\partial^{2} w}}{{\partial y^{2} }}} \right) - \left( {\frac{{\partial^{2} w}}{\partial x\partial y}} \right)^{2} } \right]} \right\}dA \\ & \quad + \frac{1}{2}\mathop {\iint }\nolimits D_{2} (x,y)\left\{ {\left( {\frac{{\partial^{2} w}}{{\partial x^{2} }} + \frac{{\partial^{2} w}}{{\partial y^{2} }}} \right)^{2} - 2(1 - v_{pzt} )\left[ {\left( {\frac{{\partial^{2} w}}{{\partial x^{2} }}\frac{{\partial^{2} w}}{{\partial y^{2} }}} \right) - \left( {\frac{{\partial^{2} w}}{\partial x\partial y}} \right)^{2} } \right]} \right\}dA \\ & \quad + B\left( t \right)\mathop {\iint }\nolimits S\left( {x,y} \right)\left[ {\left( {d_{31} + v_{pzt} d_{32} } \right)\frac{{\partial^{2} w}}{{\partial x^{2} }} + \left( {d_{32} + v_{pzt} d_{31} } \right)\frac{{\partial^{2} w}}{{\partial y^{2} }}} \right]dA \\ T & = \frac{1}{2}\rho h\mathop {\iint }\nolimits \left( {\frac{\partial w}{\partial t}} \right)^{2} {\text{d}}A + \frac{1}{2}\rho_{pzt} t_{p} \mathop {\iint }\nolimits \left( {\frac{\partial w}{\partial t}} \right)^{2} S\left( {x,y} \right){\text{d}}A + \frac{1}{2}\mathop {\iint }\nolimits \mathop \sum \limits_{r} m_{r} \delta (x - x_{r} ,y - y_{r} )\left( {\frac{\partial w}{\partial t}} \right)^{2} {\text{d}}A \\ \end{aligned}$$

The assumed solution given in double series as in (8), is substituted into these energy equations. The product of multiplication between two double series or its derivatives will have four conditions, i.e. (i) m = p and n = q, (ii) m = p and n ≠ q, (iii) m ≠ p and n = q and (iv) m ≠ p and n ≠ q, and there are nine integrals involved which can be solved as follows:

$$\begin{aligned} I_{1} & = {\iint }\left( {\frac{{\partial^{2} w}}{{\partial x^{2} }} + \frac{{\partial^{2} w}}{{\partial y^{2} }}} \right)^{2} dA \\ & = \sum\limits_{m} {\sum\limits_{n} {\sum\limits_{p} {\sum\limits_{q} {W_{mn} } } } } W_{pq} \left[ {\left( {\frac{m\pi }{a}} \right)^{2} + \left( {\frac{n\pi }{b}} \right)^{2} } \right]\left[ {\left( {\frac{p\pi }{a}} \right)^{2} + \left( {\frac{q\pi }{b}} \right)^{2} } \right]\int\limits_{0}^{a} {\sin {\mkern 1mu} \frac{m\pi x}{a}{\mkern 1mu} \sin {\mkern 1mu} \frac{p\pi x}{a}dx} \int\limits_{0}^{b} {\sin {\mkern 1mu} \frac{n\pi y}{b}{\mkern 1mu} \sin {\mkern 1mu} \frac{q\pi y}{b}dy} \\ & = \frac{ab}{4}\sum\limits_{m} {\sum\limits_{n} {W_{{mn}}^{2} } } \left[ {\left( {\frac{m\pi }{a}} \right)^{2} + \left( {\frac{n\pi }{b}} \right)^{2} } \right]^{2} \\ \end{aligned}$$
$$\begin{aligned} I_{2} & = \mathop {\iint }\nolimits \frac{{\partial^{2} w}}{{\partial x^{2} }}\frac{{\partial^{2} w}}{{\partial y^{2} }}dA \\ & = \mathop \sum \limits_{m} \mathop \sum \limits_{n} \mathop \sum \limits_{p} \mathop \sum \limits_{q} W_{mn} W_{pq} \frac{{mnpq\pi^{4} }}{{a^{2} b^{2} }}\mathop \smallint \limits_{0}^{a} \,\sin \,\frac{m\pi x}{a}\,\sin \,\frac{p\pi x}{a}dx\mathop \smallint \limits_{0}^{b} \,\sin \,\frac{n\pi y}{b}\,\sin \,\frac{q\pi y}{b}dy \\ & = \frac{ab}{4}\mathop \sum \limits_{m} \mathop \sum \limits_{n} W_{{mn}}^{2} \frac{{m^{2} n^{2} \pi^{4} }}{{a^{2} b^{2} }} \\ \end{aligned}$$
$$\begin{aligned} I_{3} & = \mathop {\iint }\nolimits \left( {\frac{{\partial^{2} w}}{\partial x\partial y}} \right)^{2} dA \\ & = \mathop \sum \limits_{m} \mathop \sum \limits_{n} \mathop \sum \limits_{p} \mathop \sum \limits_{q} W_{mn} W_{pq} \frac{{mnpq\pi^{4} }}{{a^{2} b^{2} }}\mathop \smallint \limits_{0}^{a} cos\frac{m\pi x}{a}cos\frac{p\pi x}{a}dx\mathop \smallint \limits_{0}^{b} cos\frac{n\pi y}{b}cos\frac{q\pi y}{b}dy \\ & = \frac{ab}{4}\mathop \sum \limits_{m} \mathop \sum \limits_{n} W_{{mn}}^{2} \frac{{m^{2} n^{2} \pi^{4} }}{{a^{2} b^{2} }} \\ \end{aligned}$$
$$\begin{aligned} I_{4} & = \mathop {\iint }\nolimits S\left( {x,y} \right)\left( {\frac{{\partial^{2} w}}{{\partial x^{2} }} + \frac{{\partial^{2} w}}{{\partial y^{2} }}} \right)^{2} dA \\ & = \mathop \sum \limits_{m} \mathop \sum \limits_{n} \mathop \sum \limits_{p} \mathop \sum \limits_{q} W_{mn} W_{pq} \left[ {\left( {\frac{m\pi }{a}} \right)^{2} + \left( {\frac{n\pi }{b}} \right)^{2} } \right]\left[ {\left( {\frac{p\pi }{a}} \right)^{2} + \left( {\frac{q\pi }{b}} \right)^{2} } \right]\mathop \smallint \limits_{x1}^{x2} \sin \frac{m\pi x}{a}\sin \frac{p\pi x}{a}dx\mathop \smallint \limits_{y1}^{y2} \sin \frac{n\pi y}{b}\sin \frac{q\pi y}{b}dy \\ & { = }\mathop \sum \limits_{m} \mathop \sum \limits_{n} W_{{mn}}^{2} \left[ {\left( {\frac{m\pi }{a}} \right)^{2} + \left( {\frac{n\pi }{b}} \right)^{2} } \right]^{2} C_{1x} C_{1y} \\ & \quad + \mathop \sum \limits_{m} \mathop \sum \limits_{n} \mathop \sum \limits_{p \ne m} \mathop \sum \limits_{q \ne n} W_{mn} W_{pq} \left[ {\left( {\frac{m\pi }{a}} \right)^{2} + \left( {\frac{n\pi }{b}} \right)^{2} } \right]\left[ {\left( {\frac{p\pi }{a}} \right)^{2} + \left( {\frac{q\pi }{b}} \right)^{2} } \right]C_{2x}\cdot C_{2y} \\ & \quad + \mathop \sum \limits_{m} \mathop \sum \limits_{n} \mathop \sum \limits_{p = m} \mathop \sum \limits_{q \ne n} W_{mn} W_{pq} \left[ {\left( {\frac{m\pi }{a}} \right)^{2} + \left( {\frac{n\pi }{b}} \right)^{2} } \right]\left[ {\left( {\frac{p\pi }{a}} \right)^{2} + \left( {\frac{q\pi }{b}} \right)^{2} } \right]C_{1x}\cdot C_{2y} \\ & \quad + \mathop \sum \limits_{m} \mathop \sum \limits_{n} \mathop \sum \limits_{p \ne m} \mathop \sum \limits_{q = n} W_{mn} W_{pq} \left[ {\left( {\frac{m\pi }{a}} \right)^{2} + \left( {\frac{n\pi }{b}} \right)^{2} } \right]\left[ {\left( {\frac{p\pi }{a}} \right)^{2} + \left( {\frac{q\pi }{b}} \right)^{2} } \right]C_{2x}\cdot C_{1y} \\ \end{aligned}$$
$$\begin{aligned} I_{5} & = \mathop {\iint }\nolimits S\left( {x,y} \right)\frac{{\partial^{2} w}}{{\partial x^{2} }}\frac{{\partial^{2} w}}{{\partial y^{2} }}dA \\ & = \mathop \sum \limits_{m} \mathop \sum \limits_{n} \mathop \sum \limits_{p} \mathop \sum \limits_{q} W_{mn} W_{pq} \frac{{mnpq\pi^{4} }}{{a^{2} b^{2} }}\mathop \smallint \limits_{x1}^{x2} \sin \frac{m\pi x}{a}\sin \frac{p\pi x}{a}dx\mathop \smallint \limits_{y1}^{y2} \sin \frac{n\pi y}{b}\sin \frac{q\pi y}{b}dy \\ & = \mathop \sum \limits_{m} \mathop \sum \limits_{n} W_{mn}^{2} \frac{{m^{2} n^{2} \pi^{4} }}{{a^{2} b^{2} }}C_{1x} C_{1y} + \mathop \sum \limits_{m} \mathop \sum \limits_{n} \mathop \sum \limits_{p \ne m} \mathop \sum \limits_{q \ne n} W_{mn} W_{pq} \frac{{mnpq\pi^{4} }}{{a^{2} b^{2} }}C_{2x} C_{2y} \\ & \quad + \mathop \sum \limits_{m} \mathop \sum \limits_{n} \mathop \sum \limits_{p = m} \mathop \sum \limits_{q \ne n} W_{mn} W_{pq} \frac{{mnpq\pi^{4} }}{{a^{2} b^{2} }}C_{1x} C_{2y} \\ & \quad + \mathop \sum \limits_{m} \mathop \sum \limits_{n} \mathop \sum \limits_{p \ne m} \mathop \sum \limits_{q = n} W_{mn} W_{pq} \frac{{mnpq\pi^{4} }}{{a^{2} b^{2} }}C_{2x} C_{1y} \\ \end{aligned}$$
$$\begin{aligned} I_{6} & = \mathop {\iint }\nolimits S\left( {x,y} \right)\left( {\frac{{\partial^{2} w}}{\partial x\partial y}} \right)^{2} dA \\ & = \mathop \sum \limits_{m} \mathop \sum \limits_{n} \mathop \sum \limits_{p} \mathop \sum \limits_{q} W_{mn} W_{pq} \frac{{mnpq\pi^{4} }}{{a^{2} b^{2} }}\mathop \smallint \limits_{x1}^{x2} cos\frac{m\pi x}{a}cos\frac{p\pi x}{a}dx\mathop \smallint \limits_{y1}^{y2} cos\frac{n\pi y}{b}cos\frac{q\pi y}{b}dy \\ & = \mathop \sum \limits_{m} \mathop \sum \limits_{n} W_{mn}^{2} \frac{{m^{2} n^{2} \pi^{4} }}{{a^{2} b^{2} }}C_{3x} C_{3y} + \mathop \sum \limits_{m} \mathop \sum \limits_{n} \mathop \sum \limits_{p \ne m} \mathop \sum \limits_{q \ne n} W_{mn} W_{pq} \frac{{mnpq\pi^{4} }}{{a^{2} b^{2} }}C_{4x} C_{4y} \\ & \quad + \mathop \sum \limits_{m} \mathop \sum \limits_{n} \mathop \sum \limits_{p = m} \mathop \sum \limits_{q \ne n} W_{mn} W_{pq} \frac{{mnpq\pi^{4} }}{{a^{2} b^{2} }}C_{3x} C_{4y} \\ & \quad + \mathop \sum \limits_{m} \mathop \sum \limits_{n} \mathop \sum \limits_{p \ne m} \mathop \sum \limits_{q = n} W_{mn} W_{pq} \frac{{mnpq\pi^{4} }}{{a^{2} b^{2} }}C_{4x} C_{3y} \\ \end{aligned}$$
$$\begin{aligned} I_{7} & = \mathop {\iint }\nolimits S\left( {x,y} \right)\frac{{\partial^{2} w}}{{\partial x^{2} }}dA = - \mathop \sum \limits_{m} \mathop \sum \limits_{n} W_{mn} \left( {\frac{m\pi }{a}} \right)^{2} \mathop \smallint \limits_{x1}^{x2} \sin \frac{m\pi x}{a}dx\mathop \smallint \limits_{y1}^{y2} \sin \frac{n\pi y}{b}dy \\ & = - \mathop \sum \limits_{m} \mathop \sum \limits_{n} W_{mn} \left( {\frac{m\pi }{a}} \right)^{2} C_{5x} C_{5y} \\ \end{aligned}$$
$$\begin{aligned} I_{8} & = \mathop {\iint }\nolimits S\left( {x,y} \right)\frac{{\partial^{2} w}}{{\partial y^{2} }}dA = - \mathop \sum \limits_{m} \mathop \sum \limits_{n} W_{mn} \left( {\frac{n\pi }{b}} \right)^{2} \mathop \smallint \limits_{x1}^{x2} \sin \frac{m\pi x}{a}dx\mathop \smallint \limits_{y1}^{y2} \sin \frac{n\pi y}{b}dy \\ & = - \mathop \sum \limits_{m} \mathop \sum \limits_{n} W_{mn} \left( {\frac{n\pi }{b}} \right)^{2} C_{5x} C_{5y} \\ \end{aligned}$$
$$\begin{aligned} I_{9} & = \mathop {\iint }\nolimits \left( {\frac{\partial w}{\partial t}} \right)^{2} {\text{d}}A = \mathop \sum \limits_{m} \mathop \sum \limits_{n} \mathop \sum \limits_{p} \mathop \sum \limits_{q} \dot{W}_{mn} \dot{W}_{pq} \mathop \smallint \limits_{x1}^{x2} \sin\frac{m\pi x}{a}\sin\frac{p\pi x}{a}dx\mathop \smallint \limits_{y1}^{y2} \sin\frac{n\pi y}{b}\sin\frac{q\pi y}{b}dy \\ & = \mathop \sum \limits_{m} \mathop \sum \limits_{n} \dot{W}_{mn}^{2} \frac{ab}{4} \\ \end{aligned}$$
$$\begin{aligned} I_{10} & = \mathop {\iint }\nolimits S\left( {x,y} \right)\left( {\frac{\partial w}{\partial t}} \right)^{2} {\text{d}}A \\ & = \mathop \sum \limits_{m} \mathop \sum \limits_{n} \mathop \sum \limits_{p} \mathop \sum \limits_{q} \dot{W}_{mn} \dot{W}_{pq} \mathop \smallint \limits_{x1}^{x2} \sin\frac{m\pi x}{a}\sin\frac{p\pi x}{a}dx\mathop \smallint \limits_{y1}^{y2} \sin\frac{n\pi y}{b}\sin\frac{q\pi y}{b}dy \\ & = \mathop \sum \limits_{m} \mathop \sum \limits_{n} \dot{W}_{mn}^{2} \left\{ {\frac{\rho hab}{8} + \frac{{\rho_{piezo} t_{p} }}{2}C_{1x} C_{1y} } \right\} + \mathop \sum \limits_{m} \mathop \sum \limits_{n} \mathop \sum \limits_{p \ne m} \mathop \sum \limits_{q \ne n} \dot{W}_{mn} \dot{W}_{pq} \frac{{\rho_{piezo} t_{p} }}{2}C_{2x} C_{2y} \\ & \quad + \mathop \sum \limits_{m} \mathop \sum \limits_{n} \mathop \sum \limits_{p = m} \mathop \sum \limits_{q \ne n} \dot{W}_{mn} \dot{W}_{pq} \frac{{\rho_{piezo} t_{p} }}{2}C_{1x} C_{2y} \\ & \quad + \mathop \sum \limits_{m} \mathop \sum \limits_{n} \mathop \sum \limits_{p \ne m} \mathop \sum \limits_{q = n} \dot{W}_{mn} \dot{W}_{pq} \frac{{\rho_{piezo} t_{p} }}{2}C_{2x} C_{1y} \\ \end{aligned}$$
$$\begin{aligned} I_{11} & = \mathop {\iint }\nolimits \delta (x - x_{r} ,y - y_{r} )\left( {\frac{\partial w}{\partial t}} \right)^{2} {\text{d}}A \\ & = \mathop \sum \limits_{m} \mathop \sum \limits_{n} \mathop \sum \limits_{p} \mathop \sum \limits_{q} \dot{W}_{mn} \dot{W}_{pq} \sin\frac{{m\pi x_{r} }}{a}\sin\frac{{p\pi x_{r} }}{a}\sin\frac{{n\pi y_{r} }}{b}\sin\frac{{q\pi y_{r} }}{b} \\ \end{aligned}$$

where the coefficients C are

  • \(C_{1x} = \mathop \smallint \limits_{x1}^{x2} \sin^{2} \frac{m\pi x}{a}dx = \frac{1}{2}\left[ {\left( {x_{2} - x_{1} } \right) - \frac{a}{2m\pi }(\sin \frac{{2m\pi x_{2} }}{a} - \sin \frac{{2m\pi x_{1} }}{a})} \right]\)

  • \(C_{1y} = \mathop \smallint \limits_{y1}^{y2} \sin^{2} \frac{n\pi y}{b}dy = \frac{1}{2}\left[ {\left( {y_{2} - y_{1} } \right) - \frac{b}{2n\pi }(\sin \frac{{2n\pi y_{2} }}{b} - \sin \frac{{2n\pi y_{1} }}{b})} \right]\)

  • \(\begin{aligned} C_{2x} = \mathop \smallint \limits_{x1}^{x2} \sin \frac{m\pi x}{a}\sin \frac{p\pi x}{a}dx\, =&\, \frac{a}{{2\left( {m - p} \right)\pi }}\left[ {\sin \frac{{\left( {m - p} \right)\pi x_{2} }}{a} - \sin \frac{{\left( {m - p} \right)\pi x_{1} }}{a}} \right]\\ &\,- \frac{a}{{2\left( {m + p} \right)\pi }}\left[ {\sin \frac{{\left( {m + p} \right)\pi x_{2} }}{a} - \sin \frac{{\left( {m + p} \right)\pi x_{1} }}{a}} \right]\end{aligned}\)

  • \(\begin{aligned} C_{2y} = \mathop \smallint \limits_{y1}^{y2} \sin \frac{n\pi y}{b}\sin \frac{q\pi y}{b}dy \,=&\, \frac{b}{{2\left( {n - q} \right)\pi }}\left[ {\sin \frac{{\left( {n - q} \right)\pi y_{2} }}{b} - \sin \frac{{\left( {n - q} \right)\pi y_{1} }}{b}} \right]\\ &\,- \frac{b}{2(n + q)\pi }\left[ {\sin \frac{{(n + q)\pi y_{2} }}{b} - \sin \frac{{(n + q)\pi y_{1} }}{b}} \right] \end{aligned}\)

  • \(C_{3x} = \mathop \smallint \limits_{x1}^{x2} cos^{2} \frac{m\pi x}{a}dx = \frac{1}{2}\left[ {\left( {x_{2} - x_{1} } \right) + \frac{a}{2m\pi }(\sin \frac{{2m\pi x_{2} }}{a} - \sin \frac{{2m\pi x_{1} }}{a})} \right]\)

  • \(C_{3y} = \mathop \smallint \limits_{y1}^{y2} cos^{2} \frac{n\pi y}{b}dy = \frac{1}{2}\left[ {\left( {y_{2} - y_{1} } \right) + \frac{b}{2n\pi }(\sin \frac{{2n\pi y_{2} }}{b} - \sin \frac{{2n\pi y_{1} }}{b})} \right]\)

  • \(\begin{aligned} C_{4x} = \mathop \smallint \limits_{x1}^{x2} cos\frac{m\pi x}{a}cos\frac{p\pi x}{a}dx\,=&\, \frac{a}{{2\left( {m - p} \right)\pi }}\left[ {\sin \frac{{\left( {m - p} \right)\pi x_{2} }}{a} - \sin \frac{{\left( {m - p} \right)\pi x_{1} }}{a}} \right]\\&\, + \frac{a}{2(m + p)\pi }\left[ {\sin \frac{{(m + p)\pi x_{2} }}{a} - \sin \frac{{(m + p)\pi x_{1} }}{a}} \right]\end{aligned}\)

  • \(\begin{aligned} C_{4y} = \mathop \smallint \limits_{y1}^{y2} cos\frac{n\pi y}{b}cos\frac{q\pi y}{b}dy\, =&\, \frac{b}{{2\left( {n - q} \right)\pi }}\left[ {\sin \frac{{\left( {n - q} \right)\pi y_{2} }}{b} - \sin \frac{{\left( {n - q} \right)\pi y_{1} }}{b}} \right]\\&\, + \frac{b}{2(n + q)\pi }\left[ {\sin \frac{{(n + q)\pi y_{2} }}{b} - \sin \frac{{(n + q)\pi y_{1} }}{b}} \right]\end{aligned}\)

  • \(C_{5x} = \mathop \smallint \limits_{x1}^{x2} \sin^{2} \frac{m\pi x}{a}dx = \frac{a}{m\pi }(\cos \frac{{m\pi x_{1} }}{a} - \cos \frac{{m\pi x_{2} }}{a})\)

  • \(C_{5y} = \mathop \smallint \limits_{y1}^{y2} \sin^{2} \frac{n\pi y}{b}dy = \frac{b}{n\pi }(\cos \frac{{n\pi y_{1} }}{b} - \cos \frac{{n\pi y_{2} }}{b})\)

Thus, the potential and kinetic energies of the system are:

$$\begin{aligned} U_{total} & = \mathop \sum \limits_{m}\mathop\sum \limits_{n} W_{mn}^{2} \left\{{\frac{abD}{8}\left[{\left( {\frac{m\pi }{a}} \right)^{2} + \left({\frac{n\pi }{b}}\right)^{2} } \right]^{2} } \right. \\ & {\quad\qquad\qquad\qquad\qquad+ \frac{{D_{1} }}{2}\left\{ {\left[{\left({\frac{m\pi }{a}} \right)^{2} + \left( {\frac{n\pi}{b}}\right)^{2} } \right]^{2} C_{1x} C_{1y} - 2\left( {1 -v}\right)\left( {\frac{{mn\pi^{2} }}{ab}} \right)^{2} \left({C_{1x}C_{1y} - C_{3x} C_{3y} } \right)} \right\}} \\ &\quad\qquad\qquad\qquad\qquad + \frac{{D_{2} }}{2}\left\{{\left[{\left( {\frac{m\pi }{a}} \right)^{2} + \left( {\frac{n\pi}{b}}\right)^{2} } \right]^{2} C_{1x} C_{1y} } \right. \\ &\left.{\left. { \quad\qquad\qquad\qquad \qquad\qquad\qquad - 2\left({1 -v_{pzt} } \right)\left( {\frac{{mn\pi^{2} }}{ab}}\right)^{2}\left({C_{1x} C_{1y} - C_{3x} C_{3y} } \right)} \right\}}\right\} \\&\quad + \mathop \sum \limits_{m} \mathop \sum\limits_{n} \mathop\sum \limits_{p \ne m} \mathop \sum\limits_{q \ne n} W_{mn} W_{pq}\left\{ {\frac{{D_{1}}}{2}\left\{ {\left[ {\left( {\frac{m\pi }{a}}\right)^{2} +\left( {\frac{n\pi }{b}} \right)^{2} } \right]\left[{\left({\frac{p\pi }{a}} \right)^{2} + \left( {\frac{q\pi}{b}}\right)^{2} } \right]C_{2x} C_{2y} } \right.} \right. \\&\left. { \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad - 2\left( {1 -v}\right)\left( {\frac{{mnpq\pi^{4} }}{{a^{2} b^{2} }}}\right)\left({C_{2x} C_{2y} - C_{4x} C_{4y} } \right)} \right\} \\&\qquad\qquad \qquad\qquad\qquad\qquad\qquad\quad\quad \quad+\frac{{D_{2} }}{2}\left\{ {\left[{\left( {\frac{m\pi }{a}}\right)^{2} + \left( {\frac{n\pi }{b}}\right)^{2} } \right]\left[{\left( {\frac{p\pi }{a}} \right)^{2}+ \left( {\frac{q\pi }{b}}\right)^{2} } \right]C_{2x} C_{2y}} \right.\\ & \left. {\left. {\qquad \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\qquad-2\left( {1 - v_{pzt} } \right)\left({\frac{{mnpq\pi^{4} }}{{a^{2}b^{2} }}} \right)\left({C_{2x}C_{2y} - C_{4x} C_{4y} } \right)} \right\}} \right\}\\&\quad + \mathop \sum \limits_{m} \mathop \sum \limits_{n}\mathop\sum \limits_{p = m} \mathop \sum \limits_{q \ne n}W_{mn}W_{pq} \left\{ {\frac{{D_{1} }}{2}\left\{ {\left[{\left({\frac{m\pi }{a}} \right)^{2} + \left( {\frac{n\pi}{b}}\right)^{2} } \right]\left[ {\left( {\frac{p\pi }{a}}\right)^{2}+ \left( {\frac{q\pi }{b}} \right)^{2} } \right]C_{1x}C_{2y}} \right.} \right. \\ & \left. { \qquad\qquad\quad\qquad\qquad\qquad\qquad\qquad\qquad\qquad \quad-2\left( {1 - v}\right)\left( {\frac{{mnpq\pi^{4} }}{{a^{2} b^{2}}}} \right)\left({C_{1x} C_{2y} - C_{3x} C_{4y} } \right)}\right\} \\ & \quad\quad\qquad\qquad\qquad\qquad\qquad\qquad\qquad \quad+\frac{{D_{2}}}{2}\left\{ {\left[ {\left( {\frac{m\pi }{a}}\right)^{2} +\left( {\frac{n\pi }{b}} \right)^{2} } \right]\left[{\left({\frac{p\pi }{a}} \right)^{2} + \left({\frac{q\pi }{b}}\right)^{2} } \right]C_{1x} C_{2y} } \right.\\& \left. {\left. {\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad -2\left( {1 - v_{pzt} }\right)\left( {\frac{{mnpq\pi^{4} }}{{a^{2}b^{2} }}} \right)\left({C_{1x} C_{2y} - C_{3x} C_{4y} } \right)}\right\}} \right\}\\ & \quad+ \mathop \sum \limits_{m} \mathop \sum\limits_{n} \mathop\sum \limits_{p \ne m} \mathop \sum \limits_{q =n} W_{mn}W_{pq} \left\{ {\frac{{D_{1} }}{2}\left\{ {\left[{\left({\frac{m\pi }{a}} \right)^{2} + \left( {\frac{n\pi}{b}}\right)^{2} } \right]\left[ {\left( {\frac{p\pi }{a}}\right)^{2}+ \left( {\frac{q\pi }{b}} \right)^{2} } \right]C_{2x}C_{1y}} \right.} \right. \\ & \left. { \qquad\qquad\qquad\qquad\qquad\qquad \qquad\qquad\qquad\qquad-2\left( {1 - v}\right)\left( {\frac{{mnpq\pi^{4} }}{{a^{2} b^{2}}}} \right)\left({C_{2x} C_{1y} - C_{4x} C_{3y} } \right)}\right\} \\ & \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad + \frac{{D_{2}}}{2}\left\{{\left[ {\left( {\frac{m\pi }{a}} \right)^{2} +\left( {\frac{n\pi}{b}} \right)^{2} } \right]\left[ {\left({\frac{p\pi }{a}}\right)^{2} + \left({\frac{q\pi }{b}}\right)^{2} } \right]C_{2x} C_{1y} } \right.\\& \left. {\left. { \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad- 2\left({1 - v_{pzt} }\right)\left( {\frac{{mnpq\pi^{4} }}{{a^{2} b^{2} }}}\right)\left({C_{2x} C_{1y} - C_{4x} C_{3y} } \right)} \right\}}\right\}\\ &\quad + \mathop \sum \limits_{m} \mathop \sum\limits_{n} W_{mn}B\left( t \right)\left[ {\left( {d_{31} + v_{pzt}d_{32} }\right)\left( {\frac{m\pi }{a}} \right)^{2} + \left( {d_{32}+v_{pzt} d_{31} } \right)\left( {\frac{n\pi }{b}} \right)^{2}}\right]C_{5x} C_{5y} \\ \end{aligned}$$
$$\begin{aligned} T_{total} & = \mathop \sum \limits_{m} \mathop\sum \limits_{n} \dot{W}_{mn}^{2} \left\{ {\frac{\rho hab}{8} +\frac{{\rho_{piezo} t_{p} }}{2}C_{1x} C_{1y} } \right\} +\mathop \sum \limits_{m} \mathop \sum \limits_{n} \mathop \sum\limits_{p \ne m} \mathop \sum \limits_{q \ne n} \dot{W}_{mn}\dot{W}_{pq} \frac{{\rho_{piezo} t_{p} }}{2}C_{2x} C_{2y}\\ &\quad+ \mathop \sum \limits_{m} \mathop \sum \limits_{n}\mathop \sum \limits_{p = m} \mathop \sum \limits_{q \ne n}\dot{W}_{mn} \dot{W}_{pq} \frac{{\rho_{piezo} t_{p}}}{2}C_{1x} C_{2y} \\ &\quad + \mathop \sum\limits_{m} \mathop \sum \limits_{n} \mathop \sum \limits_{p \ne m} \mathop \sum \limits_{q = n} \dot{W}_{mn} \dot{W}_{pq}\frac{{\rho_{piezo} t_{p} }}{2}C_{2x} C_{1y} \\ &\quad + \mathop \sum \limits_{m} \mathop \sum \limits_{n}\mathop \sum \limits_{p} \mathop \sum \limits_{q} \dot{W}_{mn}\dot{W}_{pq} \sin\frac{{m\pi x_{r} }}{a}\sin\frac{{p\pi x_{r}}}{a}\sin\frac{{n\pi y_{r} }}{b}\sin\frac{{q\pi y_{r} }}{b} \\ \end{aligned}$$

Lagrange’s method is used to derive the EOM of the system. Since there is no external force acting on the system, (that is, force is generated internally by the piezoelectric patch), the Lagrange’s equation becomes

$$\frac{\partial }{\partial t}\left( {\frac{\partial L}{{\partial\dot{W}_{mn} }}} \right) - \frac{\partial L}{{\partial W_{mn}}} = 0\quad where\quad L = T - U$$

the final EOM is as follows:

$$\begin{aligned} & - \omega^{2} \left\{ {W_{mn} \left\{{\frac{\rho hab}{4} + \rho_{pzt} t_{p} C_{1x} C_{1y} }\right\}} \right. \\ & \quad\quad + \frac{{\rho_{pzt}t_{p} }}{2}\left\{ {\mathop \sum \limits_{p \ne m} \mathop \sum\limits_{q \ne n} W_{pq} C_{2x} C_{2y} + \mathop \sum\limits_{p = m} \mathop \sum \limits_{q \ne n} W_{pq} C_{1x}C_{2y} + \mathop \sum \limits_{p \ne m} \mathop \sum \limits_{q= n} W_{pq} C_{2x} C_{1y} } \right\}\\& \left. { \quad\quad+ \mathop \sum \limits_{r} m_{r} \mathop \sum\limits_{p} \mathop \sum \limits_{q} W_{pq} \sin\frac{{m\pi x_{r}}}{a}\sin\frac{{p\pi x_{r} }}{a}\sin\frac{{n\pi y_{r}}}{b}\sin\frac{{q\pi y_{r} }}{b}} \right\} \\ & + 2W_{mn}\left\{ {\frac{abD}{8}\left[ {\left( {\frac{m\pi }{a}}\right)^{2} + \left( {\frac{n\pi }{b}} \right)^{2} } \right]^{2} }\right. \\ & \quad\quad\quad + \frac{{D_{1} }}{2}\left\{ {\left[{\left( {\frac{m\pi }{a}} \right)^{2} + \left( {\frac{n\pi }{b}}\right)^{2} } \right]^{2} C_{1x} C_{1y} - 2\left( {1 - v}\right)\left( {\frac{{mn\pi^{2} }}{ab}} \right)^{2} \left({C_{1x} C_{1y} - C_{3x} C_{3y} } \right)} \right\} \\&\quad\quad\quad + \frac{{D_{2} }}{2}\left\{ {\left[ {\left({\frac{m\pi }{a}} \right)^{2} + \left( {\frac{n\pi }{b}}\right)^{2} } \right]^{2} C_{1x} C_{1y} } \right. \\ & \left.{\left. { \quad\quad\quad- 2\left( {1 - v_{pzt} } \right)\left({\frac{{mn\pi^{2} }}{ab}} \right)^{2} \left( {C_{1x} C_{1y} -C_{3x} C_{3y} } \right)} \right\}} \right\}\\ & + \mathop \sum \limits_{p \ne m} \mathop \sum \limits_{q\ne n} W_{pq} \left\{ {\frac{{D_{1} }}{2}\left\{ {\left[ {\left({\frac{m\pi }{a}} \right)^{2} + \left( {\frac{n\pi }{b}}\right)^{2} } \right]\left[ {\left( {\frac{p\pi }{a}} \right)^{2}+ \left( {\frac{q\pi }{b}} \right)^{2} } \right]C_{2x} C_{2y}} \right.} \right. \\ & \left. { \quad\quad\quad\quad\quad\quad - 2\left({1 - v} \right)\left( {\frac{{mnpq\pi^{4} }}{{a^{2} b^{2} }}}\right)\left( {C_{2x} C_{2y} - C_{4x} C_{4y} } \right)}\right\} \\ & \quad\quad\quad\quad\quad\quad + \frac{{D_{2} }}{2}\left\{{\left[ {\left( {\frac{m\pi }{a}} \right)^{2} + \left({\frac{n\pi }{b}} \right)^{2} } \right]\left[ {\left( {\frac{p\pi}{a}} \right)^{2} + \left( {\frac{q\pi }{b}} \right)^{2} }\right]C_{2x} C_{2y} } \right.\\ & \left. {\left. {\quad\quad\quad\quad\quad\quad - 2\left( {1 - v_{pzt} }\right)\left( {\frac{{mnpq\pi^{4} }}{{a^{2} b^{2} }}} \right)\left({C_{2x} C_{2y} - C_{4x} C_{4y} } \right)} \right\}} \right\}\\ & + \mathop \sum \limits_{p = m} \mathop \sum \limits_{q \ne n} W_{pq} \left\{ {\frac{{D_{1} }}{2}\left\{ {\left[ {\left({\frac{m\pi }{a}} \right)^{2} + \left( {\frac{n\pi }{b}}\right)^{2} } \right]\left[ {\left( {\frac{p\pi }{a}} \right)^{2}+ \left( {\frac{q\pi }{b}} \right)^{2} } \right]C_{1x} C_{2y}} \right.} \right. \\ & \left. {\quad\quad\quad\quad\quad\quad- 2\left( {1- v} \right)\left( {\frac{{mnpq\pi^{4} }}{{a^{2} b^{2} }}}\right)\left( {C_{1x} C_{2y} - C_{3x} C_{4y} } \right)}\right\} \\ &\quad\quad\quad\quad\quad\quad + \frac{{D_{2} }}{2}\left\{{\left[ {\left( {\frac{m\pi }{a}} \right)^{2} + \left({\frac{n\pi }{b}} \right)^{2} } \right]\left[ {\left( {\frac{p\pi}{a}} \right)^{2} + \left( {\frac{q\pi }{b}} \right)^{2} }\right]C_{1x} C_{2y} } \right.\\ & \left. {\left. {\quad\quad\quad\quad\quad\quad - 2\left( {1 - v_{pzt} }\right)\left( {\frac{{mnpq\pi^{4} }}{{a^{2} b^{2} }}} \right)\left({C_{1x} C_{2y} - C_{3x} C_{4y} } \right)} \right\}} \right\}\\ & + \mathop \sum \limits_{p \ne m} \mathop \sum \limits_{q =n} W_{pq} \left\{ {\frac{{D_{1} }}{2}\left\{ {\left[ {\left({\frac{m\pi }{a}} \right)^{2} + \left( {\frac{n\pi }{b}}\right)^{2} } \right]\left[ {\left( {\frac{p\pi }{a}} \right)^{2}+ \left( {\frac{q\pi }{b}} \right)^{2} } \right]C_{2x} C_{1y}} \right.} \right. \\ & \left. {\quad\quad\quad\quad\quad\quad - 2\left( {1- v} \right)\left( {\frac{{mnpq\pi^{4} }}{{a^{2} b^{2} }}}\right)\left( {C_{2x} C_{1y} - C_{4x} C_{3y} } \right)}\right\} \\ &\quad\quad\quad\quad\quad\quad+ \frac{{D_{2} }}{2}\left\{{\left[ {\left( {\frac{m\pi }{a}} \right)^{2} + \left({\frac{n\pi }{b}} \right)^{2} } \right]\left[ {\left( {\frac{p\pi}{a}} \right)^{2} + \left( {\frac{q\pi }{b}} \right)^{2} }\right]C_{2x} C_{1y} } \right.\\ & \left. {\left. {\quad\quad\quad\quad\quad\quad - 2\left( {1 - v_{pzt} }\right)\left( {\frac{{mnpq\pi^{4} }}{{a^{2} b^{2} }}} \right)\left({C_{2x} C_{1y} - C_{4x} C_{3y} } \right)} \right\}} \right\}\\ & = - B\left( t \right)\left[ {\left( {d_{31} + v_{pzt}d_{32} } \right)\left( {\frac{m\pi }{a}} \right)^{2} + \left({d_{32} + v_{pzt} d_{31} } \right)\left( {\frac{n\pi }{b}}\right)^{2} } \right]C_{5x} C_{5y} \\ \end{aligned}$$

Terms in mass matrix (denoted by M mnpq ), stiffness matrix (denoted by K mnpq ) and force vector (denoted by F mn ) are:

$$\begin{aligned} M_{mnpq} & = \frac{\rho hab}{4} + \rho_{pzt} t_{p} C_{1x} C_{1y} + \frac{{\rho_{pzt} t_{p} }}{2}\left\{ {\mathop \sum \limits_{p \ne m} \mathop \sum \limits_{q \ne n} C_{2x} C_{2y} + \mathop \sum \limits_{p = m} \mathop \sum \limits_{q \ne n} C_{1x} C_{2y} + \mathop \sum \limits_{p \ne m} \mathop \sum \limits_{q = n} C_{2x} C_{1y} } \right\} \\ & \quad + \mathop \sum \limits_{r} m_{r} \mathop \sum \limits_{p} \mathop \sum \limits_{q} \sin\frac{{m\pi x_{r} }}{a}\sin\frac{{p\pi x_{r} }}{a}\sin\frac{{n\pi y_{r} }}{b}\sin\frac{{q\pi y_{r} }}{b} \\ \end{aligned}$$
$$\begin{aligned} K_{mnpq} & = 2\left\{ {\frac{abD}{8}\left[{\left( {\frac{m\pi }{a}} \right)^{2} + \left( {\frac{n\pi }{b}}\right)^{2} } \right]^{2} } \right. \\ &\quad \quad + \frac{{D_{1}}}{2}\left\{ {\left[ {\left( {\frac{m\pi }{a}} \right)^{2} +\left( {\frac{n\pi }{b}} \right)^{2} } \right]^{2} C_{1x}C_{1y} - 2\left( {1 - v} \right)\left( {\frac{{mn\pi^{2}}}{ab}} \right)^{2} \left( {C_{1x} C_{1y} - C_{3x} C_{3y}} \right)} \right\} \\ &\quad \quad + \frac{{D_{2} }}{2}\left\{{\left[ {\left( {\frac{m\pi }{a}} \right)^{2} + \left({\frac{n\pi }{b}} \right)^{2} } \right]^{2} C_{1x} C_{1y} }\right. \\ & \left. {\quad \quad \left. { - 2\left( {1 - v_{pzt}} \right)\left( {\frac{{mn\pi^{2} }}{ab}} \right)^{2} \left({C_{1x} C_{1y} - C_{3x} C_{3y} } \right)} \right\}} \right\}\\ & \quad+ \mathop \sum \limits_{p \ne m} \mathop \sum \limits_{q\ne n} \left\{ {\frac{{D_{1} }}{2}\left\{ {\left[ {\left({\frac{m\pi }{a}} \right)^{2} + \left( {\frac{n\pi }{b}}\right)^{2} } \right]\left[ {\left( {\frac{p\pi }{a}} \right)^{2}+ \left( {\frac{q\pi }{b}} \right)^{2} } \right]C_{2x} C_{2y}} \right.} \right. \\ & \left. { \quad\quad - 2\left( {1 - v}\right)\left( {\frac{{mnpq\pi^{4} }}{{a^{2} b^{2} }}} \right)\left({C_{2x} C_{2y} - C_{4x} C_{4y} } \right)} \right\} \\ &\quad\quad + \frac{{D_{2} }}{2}\left\{ {\left[ {\left( {\frac{m\pi}{a}} \right)^{2} + \left( {\frac{n\pi }{b}} \right)^{2} }\right]\left[ {\left( {\frac{p\pi }{a}} \right)^{2} + \left({\frac{q\pi }{b}} \right)^{2} } \right]C_{2x} C_{2y} } \right.\\ & \left. {\left. {\quad \quad - 2\left( {1 - v_{pzt} }\right)\left( {\frac{{mnpq\pi^{4} }}{{a^{2} b^{2} }}} \right)\left({C_{2x} C_{2y} - C_{4x} C_{4y} } \right)} \right\}} \right\}\\ &\quad + \mathop \sum \limits_{p = m} \mathop \sum \limits_{q \ne n} \left\{ {\frac{{D_{1} }}{2}\left\{ {\left[ {\left( {\frac{m\pi}{a}} \right)^{2} + \left( {\frac{n\pi }{b}} \right)^{2} }\right]\left[ {\left( {\frac{p\pi }{a}} \right)^{2} + \left({\frac{q\pi }{b}} \right)^{2} } \right]C_{1x} C_{2y} }\right.} \right. \\ & \left. {\quad \quad - 2\left( {1 - v}\right)\left( {\frac{{mnpq\pi^{4} }}{{a^{2} b^{2} }}} \right)\left({C_{1x} C_{2y} - C_{3x} C_{4y} } \right)} \right\} \\ &\quad\quad + \frac{{D_{2} }}{2}\left\{ {\left[ {\left( {\frac{m\pi}{a}} \right)^{2} + \left( {\frac{n\pi }{b}} \right)^{2} }\right]\left[ {\left( {\frac{p\pi }{a}} \right)^{2} + \left({\frac{q\pi }{b}} \right)^{2} } \right]C_{1x} C_{2y} } \right.\\ & \left. {\left. { \quad\quad - 2\left( {1 - v_{pzt} }\right)\left( {\frac{{mnpq\pi^{4} }}{{a^{2} b^{2} }}} \right)\left({C_{1x} C_{2y} - C_{3x} C_{4y} } \right)} \right\}} \right\}\\ &\quad + \mathop \sum \limits_{p \ne m} \mathop \sum \limits_{q =n} \left\{ {\frac{{D_{1} }}{2}\left\{ {\left[ {\left( {\frac{m\pi}{a}} \right)^{2} + \left( {\frac{n\pi }{b}} \right)^{2} }\right]\left[ {\left( {\frac{p\pi }{a}} \right)^{2} + \left({\frac{q\pi }{b}} \right)^{2} } \right]C_{2x} C_{1y} }\right.} \right. \\ & \left. {\quad \quad - 2\left( {1 - v}\right)\left( {\frac{{mnpq\pi^{4} }}{{a^{2} b^{2} }}} \right)\left({C_{2x} C_{1y} - C_{4x} C_{3y} } \right)} \right\} \\ &\quad\quad + \frac{{D_{2} }}{2}\left\{ {\left[ {\left( {\frac{m\pi}{a}} \right)^{2} + \left( {\frac{n\pi }{b}} \right)^{2} }\right]\left[ {\left( {\frac{p\pi }{a}} \right)^{2} + \left({\frac{q\pi }{b}} \right)^{2} } \right]C_{2x} C_{1y} } \right.\\ & \left. {\left. {\quad \quad - 2\left( {1 - v_{pzt} }\right)\left( {\frac{{mnpq\pi^{4} }}{{a^{2} b^{2} }}} \right)\left({C_{2x} C_{1y} - C_{4x} C_{3y} } \right)} \right\}} \right\}\\ F_{mn} & = - B\left( t \right)\left[ {\left( {d_{31} +v_{pzt} d_{32} } \right)\left( {\frac{m\pi }{a}} \right)^{2} +\left( {d_{32} + v_{pzt} d_{31} } \right)\left( {\frac{n\pi}{b}} \right)^{2} } \right]C_{5x} C_{5y} \\ \end{aligned}$$

where

$$\left[ {\mathbf{M}} \right] = \left[ {\begin{array}{*{20}c} {M_{1111} } & {M_{1112} } & \ldots & {M_{11pq} } \\ {M_{1211} } & {M_{1212} } & \ldots & \ldots \\ \ldots & \ldots & \ldots & \ldots \\ {M_{mn11} } & \ldots & \ldots & {M_{mnpq} } \\ \end{array} } \right] \quad \left[ {\mathbf{K}} \right]\left[ { = \begin{array}{*{20}c} {K_{1111} } & {K_{1112} } & \ldots & {K_{11pq} } \\ {K_{1211} } & {K_{1212} } & \ldots & \ldots \\ \ldots & \ldots & \ldots & \ldots \\ {K_{mn11} } & \ldots & \ldots & {K_{mnpq} } \\ \end{array} } \right] \quad \left[ {\mathbf{F}} \right] = \left[ { \begin{array}{*{20}c} {F_{11} } \\ {F_{12} } \\ \ldots \\ {F_{mn} } \\ \end{array}} \right]$$

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Wahid, A.N., Muthalif, A.G.A., Nor, K.A.M. (2015). Dynamic Effects of Piezoelectric Patch Actuators on Vibrational Response of Non-deterministic Structures: Modelling and Simulations. In: Gaol, F., Shrivastava, K., Akhtar, J. (eds) Recent Trends in Physics of Material Science and Technology. Springer Series in Materials Science, vol 204. Springer, Singapore. https://doi.org/10.1007/978-981-287-128-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-128-2_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-127-5

  • Online ISBN: 978-981-287-128-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics