Skip to main content

Brain Tumor Segmentation Using Fully Convolution Neural Network

  • Conference paper
  • First Online:
Proceedings of International Conference on Recent Innovations in Computing

Abstract

Early stage brain tumor diagnosis can lead to proper treatment planning, which improves patient survival chances. A human expert advises an appropriate medical imaging scan based on the symptoms. Diagnosis done by a human expert is time-consuming, non-reproducible, and highly dependent on the expert’s expertise. The computerized analysis is preferred to help experts in diagnosis. The paper focuses on implementing a fully convolution neural network to segment brain tumor from MRI images. The proposed network achieves comparable dice similarity with reduced network parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agravat RR, Raval MS (2018) Deep learning for automated brain tumor segmentation in mri images. In: Soft computing based medical image analysis. Elsevier, pp 183–201

    Google Scholar 

  2. Agravat RR, Raval MS (2019) Brain tumor segmentation and survival prediction. In: International MICCAI brainlesion workshop. Springer, pp 338–348

    Google Scholar 

  3. Agravat RR, Raval MS (2019) Prediction of overall survival of brain tumor patients. In: TENCON 2019–2019 IEEE region 10 conference (TENCON). IEEE, pp 31–35

    Google Scholar 

  4. Agravat RR, Raval MS (2020) 3d semantic segmentation of brain tumor for overall survival prediction. In: International MICCAI brainlesion workshop. Springer, pp 215–227

    Google Scholar 

  5. Andermatt S, Pezold S, Cattin P (2016) Multi-dimensional gated recurrent units for the segmentation of biomedical 3d-data. In: Deep learning and data labeling for medical applications. Springer, pp 142–151

    Google Scholar 

  6. Andermatt S, Pezold S, Cattin P (2017) Multi-dimensional gated recurrent units for brain tumor segmentation. In: MICCAI multimodal brain tumor segmentation challenge (BraTS), pp 15–19

    Google Scholar 

  7. Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495

    Article  Google Scholar 

  8. Beers A, Chang K, Brown J, Sartor E, Mammen C, Gerstner E, Rosen B, Kalpathy Cramer J (2017) Sequential 3d u-nets for biologically-informed brain tumor segmentation. arXiv preprint arXiv:1709.02967

  9. Casamitjana A, Puch S, Aduriz A, Sayrol E, Vilaplana V (2016) 3d convolutional networks for brain tumor segmentation. In: Proceedings of the MICCAI challenge on multimodal brain tumor image segmentation (BRATS), pp 65–68

    Google Scholar 

  10. Chen L, Wu Y, DSouza AM, Abidin AZ, Wismüller A, Xu C (2018) Mri tumor segmentation with densely connected 3d cnn. In: Medical imaging 2018: image processing, vol 10574. International Society for Optics and Photonics, p 105741F

    Google Scholar 

  11. Colmeiro RR, Verrastro C, Grosges T (2017) Multimodal brain tumor segmentation using 3d convolutional networks. In: International MICCAI brainlesion workshop. Springer, pp 226–240

    Google Scholar 

  12. Dong H, Yang G, Liu F, Mo Y, Guo Y (2017) Automatic brain tumor detection and segmentation using u-net based fully convolutional networks. In: Annual conference on medical image understanding and analysis. Springer, pp 506–517

    Google Scholar 

  13. Feng X, Meyer C (2017) Patch-based 3d u-net for brain tumor segmentation. In: 2017 international MICCAI BraTS challenge

    Google Scholar 

  14. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin PM, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31

    Article  Google Scholar 

  15. Jain K (2015) Analytics Vidhya (2015), https://www.analyticsvidhya.com/blog/2017/08/10-advanced-deep-learningarchitectures-data-scientists/. Accessed 23 May 2018

  16. Jia H, Bai C, Cai W, Huang H, Xia Y (2000) Hnf-netv2 for brain tumor segmentation using multi-modal mr imaging. arXiv preprint arXiv:2202.05268

  17. Kamnitsas K, Ferrante E, Parisot S, Ledig C, Nori AV, Criminisi A, Rueckert lD, Glocker B, Deepmedic for brain tumor segmentation. In: International

    Google Scholar 

  18. Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. Med Image Anal 36:61–78

    Google Scholar 

  19. Kim G (2017) Brain tumor segmentation using deep fully convolutional neural networks. In: International MICCAI brainlesion workshop. Springer, pp 344–357

    Google Scholar 

  20. Li Y, Shen L (2017) Deep learning based multimodal brain tumor diagnosis. In: International MICCAI brainlesion workshop. Springer, pp 149–158

    Google Scholar 

  21. Li Z, Wang Y, Yu J (2017) Brain tumor segmentation using an adversarial network. In: International MICCAI brainlesion workshop. Springer, pp 123–132

    Google Scholar 

  22. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

    Google Scholar 

  23. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R, et al (2015) The multimodal brain tumor image segmentation benchmark (brats). IEEE Transactions Med Imaging 34(10):1993–2024

    Google Scholar 

  24. Orhan AE, Pitkow X (2017) Skip connections eliminate singularities. arXiv preprint arXiv:1701.09175

  25. Pereira S, Oliveira A, Alves V, Silva CA (2017) On hierarchical brain tumor segmentation in mri using fully convolutional neural networks: a preliminary study. In: Bioengineering (ENBENG), 2017 IEEE 5th Portuguese Meeting on, pp 1–4. IEEE

    Google Scholar 

  26. Rajput S, Agravat R, Roy M, Raval MS (2021) Glioblastoma multiforme patient survival prediction. In: International conference on medical imaging and computer-aided diagnosis. Springer, pp 47–58

    Google Scholar 

  27. Rezaei M, Harmuth K, Gierke W, Kellermeier T, Fischer M, Yang H, Meinel C (2017) Conditional adversarial network for semantic segmentation of brain tumor. arXiv preprint arXiv:1708.05227

  28. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241

    Google Scholar 

  29. Saeed MU, Ali G, Bin W, Almotiri SH, AlGhamdi MA, Nagra AA, Masood K, Amin RU (2021) Rmu-net: a novel residual mobile u-net model for brain tumor segmentation from mr images. Electronics 10(16):1962

    Google Scholar 

  30. Shen H, Jianguo Z, Weishi Z (2017) Efficient symmetry-driven fully convolutional network for multimodal brain tumor segmentation. In: 2017 IEEE International conference on image processing (ICIP). IEEE

    Google Scholar 

  31. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4itk: improved n3 bias correction. IEEE Trans Med Imaging 29(6):1310–1320

    Google Scholar 

  32. Yan T, Ou Y, Huang T (2017) Automatic segmentation of brain tumor from mr images using segnet: selection of training data sets. MICCAI Multimodal Brain Tumor Segmentation Challenge (BraTS) 309–312

    Google Scholar 

  33. Zhang T, Xu D, He K, Zhang H, Fu Y (2022) 3d u-net with trans-coder for brain tumor segmentation. In: Thirteenth international conference on graphics and image processing (ICGIP 2021), vol 12083, pp 540–548. SPIE

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank the support of NVIDIA Corporation with the donation of the Quadro K5200 and Quadro P5000 GPU used for this research, Dr. Krutarth Agravat (Medical Officer, Essar) for his help in discussion on tumors and analysis of the results. Authors are indebted to Mr. Pratik Chaudhary and Mr. Himanshu Budhia for their constant support during GPU installation and implementation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupal A. Kapdi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kapdi, R.A., Patel, J.A., Patel, J. (2023). Brain Tumor Segmentation Using Fully Convolution Neural Network. In: Singh, Y., Singh, P.K., Kolekar, M.H., Kar, A.K., Gonçalves, P.J.S. (eds) Proceedings of International Conference on Recent Innovations in Computing. Lecture Notes in Electrical Engineering, vol 1001. Springer, Singapore. https://doi.org/10.1007/978-981-19-9876-8_1

Download citation

Publish with us

Policies and ethics