Skip to main content

Theranostic Approaches for Diagnosis and Treatment of Cancer: An Update

  • Chapter
  • First Online:
Targeted Cancer Therapy in Biomedical Engineering

Abstract

Cancer is one of the most causes of disease-related mortality. One of the major causes of this has been the delay in diagnosis and considerable failure of therapeutic options for cancer. The failure is mainly due to frequent metastasis and a high degree of resistance. The simplest solution to the problem lies in either early diagnosis, efficacious therapy, or continuous monitoring. The identification of sensitive and reliable biomarkers for early screening and therapeutic monitoring has been a thrust area of research. The available alternative, despite the efforts, carries several limitations including high toxicity associated with current therapeutic agents and a high degree of genetic variability among cancer types. Thus, there is an unmet need for the development of safer therapeutic alternatives and better diagnostic methods. The field of theranostics has provided an important ray of hope for the advancement of breast cancer therapeutics. Theranostics deal with the targeting receptor for both therapeutic as well as diagnostic purposes. The field of theranostics has been efficiently complemented by the fields of nanomedicine and nuclear medicine. Various aptamers, antibodies, enzymes, and proteins have been conjugated and functionalized to form theranostic nanoparticles and radiopharmaceuticals with the patient-centric approach. The current chapter discusses the concepts and applications of theranostic approaches for the diagnosis and treatment of cancer with a focus on the recent advancement in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2020. CA Can J Clin 70, 7–30 (2020)

    Google Scholar 

  2. M.Z. Ahmad, S. Akhter, G.K. Jain et al., Metallic nanoparticles: technology overview & drug delivery applications in oncology. Exp. Op. Drug. Del. 7, 927–942 (2010)

    Article  Google Scholar 

  3. M.Z. Ahmad, S. Akhter, N. Mallik et al., Application of decoy oligonucleotides as novel therapeutic strategy: a contemporary overview. Curr. Drug. Discov. Tech. 10, 71–84 (2013)

    Google Scholar 

  4. M.Z. Ahmad, M. Rizwanullah, J. Ahmad, et al., Progress in nanomedicine-based drug delivery in designing of chitosan nanoparticles for cancer therapy. Int. J. Poly. Mat. Poly. Biomat. 1–22 (2021)

    Google Scholar 

  5. Global cancer observatory (2020). Available from: https://gco.iarc.fr/

  6. GLOBOCAN 2020: New Global Cancer Data (2020). Available from: https://www.uicc.org/news/globocan-2020-new-global-cancer-data

  7. S. Tran, P.J. De Giovanni, B. Piel et al., Cancer nanomedicine: a review of recent success in drug delivery. Clin. Trans. Med. 6, 44 (2017)

    Article  Google Scholar 

  8. N. Ahmed, H. Fessi, A. Elaissari, Theranostic applications of nanoparticles in cancer. Drug Discov. Tod. 17, 928–934 (2012)

    Article  Google Scholar 

  9. Z. Zhang, J. Wang, C. Chen, Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv. Mat. 25, 3869–3880 (2013)

    Article  Google Scholar 

  10. M.Z. Ahmad, S. Akhter, Z. Rahman et al., Nanometric gold in cancer nanotechnology: current status and future prospect. J. Phar. Pharmacol. 65, 634–651 (2013)

    Article  Google Scholar 

  11. M. Rahman, M.Z. Ahmad, I. Kazmi et al., Emergence of nanomedicine as cancer targeted magic bullets: recent development and need to address the toxicity apprehension. Curr. Drug Discov. Tech. 9, 319–329 (2012)

    Article  Google Scholar 

  12. S. Akhter, M.Z. Ahmad, F.J. Ahmad et al., Gold nanoparticles in theranostic oncology: current state-of-the-art. Exp. Op. Drug Deliv. 9, 1225–1243 (2012)

    Article  Google Scholar 

  13. M.Z. Ahmad, J. Ahmad, A. Haque et al., Emerging advances in synthetic cancer nano-vaccines: opportunities and challenges. Exp. Rev. Vacc. 19, 1053–1071 (2020)

    Article  Google Scholar 

  14. X.X. Peng, A.K. Tiwari, H.C. Wu et al., Overexpression of P-glycoprotein induces acquired resistance to imatinib in chronic myelogenous leukemia cells. Chin. J. Can. 31, 110–118 (2012)

    Article  Google Scholar 

  15. M. Wang, J. Zhao, L. Zhang et al., Role of tumor microenvironment in tumorigenesis. J. Can. 8, 761–773 (2017)

    Article  Google Scholar 

  16. V. Negri, J. Pacheco-Torres, D. Calle et al., Carbon nanotubes in biomedicine. Top Curr. Chem. 378, 15 (2020)

    Article  Google Scholar 

  17. Y.Y. Tan, P.K. Yap, G.L. Xin Lim et al., Perspectives and advancements in the design of nanomaterials for targeted cancer theranostics. Chem. Biol. Int. 329, 109221 (2020)

    Article  Google Scholar 

  18. J. Shi, P.W. Kantoff, R. Wooster et al., Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Can. 17, 20–37 (2016)

    Article  Google Scholar 

  19. B. Zhang, Y. Wang, G. Zhai, Biomedical applications of the graphene-based materials. Mat. Sci. Eng. C 61, 953–964 (2016)

    Article  Google Scholar 

  20. Y.G. Assaraf, A. Brozovic, A.C. Goncalves et al., The multi-factorial nature of clinical multidrug resistance in cancer. Drug Res. Up 46, 100645 (2019)

    Article  Google Scholar 

  21. Q. Cui, J.Q. Wang, Y.G. Assaraf et al., Modulating ROS to overcome multidrug resistance in cancer. Drug Res. Up 41, 1–25 (2018)

    Article  Google Scholar 

  22. Y.J. Li, Y.H. Lei, N. Yao et al., Autophagy and multidrug resistance in cancer. Chin. J. Can. 36, 52 (2017)

    Article  Google Scholar 

  23. S.Y. Chun, Y.S. Kwon, K.S. Nam et al., Lapatinib enhances the cytotoxic effects of doxorubicin in MCF-7 tumor spheres by inhibiting the drug efflux function of ABC transporters. Biomed. Pharmacother. 72, 37–43 (2015)

    Article  Google Scholar 

  24. G. Filomeni, P. Turella, M.L. Dupuis et al., 6-(7-Nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol, a specific glutathione S-transferase inhibitor, overcomes the multidrug resistance (MDR)-associated protein 1-mediated MDR in small cell lung cancer. Mol. Can. Thera. 7, 371–379 (2008)

    Article  Google Scholar 

  25. A. Bedi, J.P. Barber, G.C. Bedi et al., BCRABL-mediated inhibition of apoptosis with delay of G2/M transition after DNA damage: a mechanism of resistance to multiple anticancer agents. Blood 86, 1148–1158 (1995)

    Article  Google Scholar 

  26. C.S. Wilson, L.J. Medeiros, R. Lai et al., DNA topoisomerase IIα in multiple myeloma: a marker of cell proliferation and not drug resistance. Mod. Path 14, 886–891 (2001)

    Article  Google Scholar 

  27. H. Li, B.B. Yang, Friend or foe: the role of microRNA in chemotherapy resistance. Act Pharmacol Sin 34, 870–879 (2013)

    Article  Google Scholar 

  28. L. Milane, Z. Duan, M. Amiji, Role of hypoxia and glycolysis in the development of multi-drug resistance in human tumor cells and the establishment of an orthotopic multi-drug resistant tumor model in nude mice using hypoxic pre-conditioning. Can. Cel. Int. 11, 3 (2011)

    Google Scholar 

  29. D.R. Camidge, W. Pao, L.V. Sequist, Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat. Rev. Clin. Onc. 11, 473–481 (2014)

    Article  Google Scholar 

  30. G.N. Zhang, C.R. Ashby, Y.K. Zhang et al., The reversal of antineoplastic drug resistance in cancer cells by β-elemene. Chin. J. Can. 34, 488–495 (2015)

    Google Scholar 

  31. P. Kumar, D.M. Zhang, K. Degenhardt et al., Autophagy and transporter-based multi-drug resistance. Cell 1, 558–575 (2012)

    Article  Google Scholar 

  32. R.J. Kathawala, Y.J. Wang, C.R. Ashby Jr. et al., Recent advances regarding the role of ABC subfamily C member 10 (ABCC10) in the efflux of antitumor drugs. Chin. J. Can. 33, 223–230 (2014)

    Article  Google Scholar 

  33. N. Anreddy, P. Gupta, R. Kathawala et al., Tyrosine kinase inhibitors as reversal agents for ABC transporter mediated drug resistance. Molecules 19, 13848–13877 (2014)

    Article  Google Scholar 

  34. S.K. Konig, M. Herzog, D. Theile et al., Impact of drug transporters on cellular resistance towards saquinavir and darunavir. J. Antimic Chemother. 65, 2319–2328 (2010)

    Article  Google Scholar 

  35. Z. Li, S. Tan, S. Li, Q. Shen et al., Cancer drug delivery in the nano era: an overview and perspectives. Oncol. Rep. 38, 611–624 (2017)

    Article  Google Scholar 

  36. U.H. Gala, D.A. Miller, R.O. Williams, Harnessing the therapeutic potential of anticancer drugs through amorphous solid dispersions. Biochim. Biophy. Act Rev. Can. 1873, 188319 (2019)

    Google Scholar 

  37. E.D. Agdeppa, M.E. Spilker, A review of imaging agent development. AAPS J. 11, 286–299 (2009)

    Article  Google Scholar 

  38. D.S. Shewach, R.D. Kuchta, Introduction to cancer chemotherapeutics. Chem. Rev. 109, 2859–2861 (2009)

    Article  Google Scholar 

  39. S. Gurunathan, M.H. Kang, M. Qasim et al., Nanoparticle-mediated combination therapy: two-in-one approach for cancer. Int. J. Mol. Sci. 19, 3264 (2018)

    Article  Google Scholar 

  40. R.C. Maranhao, C.G. Vital, T.M. Tavoni et al., Clinical experience with drug delivery systems as tools to decrease the toxicity of anticancer chemotherapeutic agents. Exp. Op. Drug Deliv. 14, 1217–1226 (2017)

    Article  Google Scholar 

  41. A. Ruhle, P.E. Huber, R. Saffrich et al., The current understanding of mesenchymal stem cells as potential attenuators of chemotherapy-induced toxicity. Int. J. Can. 143, 2628–2639 (2018)

    Article  Google Scholar 

  42. N.M. Kuderer, D.C. Dale, J. Crawford et al., Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer 106, 2258–2266 (2006)

    Article  Google Scholar 

  43. M. Volkova, R. Russell, Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr. Cardiol. Rev. 7, 214–220 (2012)

    Google Scholar 

  44. R.G. Selker, S.A. Jacobs, P.B. Moore et al., 1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU)-induced pulmonary fibrosis. Neurosurgery 7, 560–565 (1980)

    Article  Google Scholar 

  45. A.L. Kunkler, E.M. Binkley, D. Mantopoulos et al., Known and novel ocular toxicities of biologics, targeted agents, and traditional chemotherapeutics. Graefe’s Arc Clin. Exp. Ophth. 257, 1771–1781 (2019)

    Article  Google Scholar 

  46. N. Saraswat, A. Sood, R. Verma et al., Nail changes induced by chemotherapeutic agents. Ind. J. Dermatol. 65, 193–198 (2020)

    Article  Google Scholar 

  47. F. Farjadian, A. Ghasemi, O. Gohari et al., Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine 14, 93–126 (2018)

    Article  Google Scholar 

  48. J.H. Park, S. Lee, J.H. Kim et al., Polymeric nanomedicine for cancer therapy. Prog. Poly Sci. 33, 113–137 (2008)

    Article  Google Scholar 

  49. J.I. Hare, T. Lammers, M.B. Ashford et al., Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv. Drug Deliv. Rev. 108, 25–38 (2017)

    Article  Google Scholar 

  50. S.M. Moghimi, A.C. Hunter et al., Nanomedicine: current status and future prospects. FASEB J. 19, 311–330 (2005)

    Article  Google Scholar 

  51. J. Zhu, M. Xu, M. Gao et al., Graphene oxide induced perturbation to plasma membrane and cytoskeletal meshwork sensitize cancer cells to chemotherapeutic agents. ACS Nano 11, 2637–2651 (2017)

    Article  Google Scholar 

  52. Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Can. Res. 46, 6387–6392 (1986)

    Google Scholar 

  53. E. Panzarini, L. Dini, Nanomaterial-induced autophagy: a new reversal MDR tool in cancer therapy? Mol. Pharmaceut. 11, 2527–2538 (2014)

    Article  Google Scholar 

  54. M. Brandl, Liposomes as drug carriers: a technological approach. Biotech. Ann. Rev. 7, 59–85 (2001)

    Article  Google Scholar 

  55. A.E.H. De Mendoza, M.A. Campanero, F. Mollinedo et al., Lipid nanomedicines for anticancer drug therapy. J. Biomed. Nanotech. 5, 323–343 (2009)

    Article  Google Scholar 

  56. Y. Matsumura, T. Hamaguchi, T. Ura et al., Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Brit. J. Can. 91, 1775–1781 (2004)

    Article  Google Scholar 

  57. J.H. Lee, S.W. Jung, I.S. Kim et al., Polymeric nanoparticle composed of fatty acids and poly(ethylene glycol) as a drug carrier. Int. J. Pharmaceut. 251, 23–32 (2003)

    Article  Google Scholar 

  58. Z. Liu, Y. Jiao, Y. Wang et al., Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev. 60, 1650–1662 (2008)

    Article  Google Scholar 

  59. S. Dakhil, W. Ensminger, K. Cho et al., Improved regional selectivity of hepatic arterial bcnu with degradable microspheres. Cancer 50, 631–635 (1982)

    Article  Google Scholar 

  60. N. Nelken, P.A. Schneider, Advances in stent technology and drug-eluting stents. Sur. Clin. North Am. 84, 1203–1236 (2004)

    Article  Google Scholar 

  61. J. Kreuter, Nanoparticles and microparticles for drug and vaccine delivery. J. Ana. 189, 503–505 (1996)

    Google Scholar 

  62. D. Breimer, Future challenges for drug delivery research. Adv. Drug Deliv. Rev. 33, 265–268 (1998)

    Article  Google Scholar 

  63. A. Fernandez-Fernandez, R. Manchanda, A.J. McGoron, Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. App. Biochem. Biotech. 165, 1628–1651 (2011)

    Article  Google Scholar 

  64. H. Sajja, M. East, H. Mao, Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr. Drug Discov. Tech. 6, 43–51 (2009)

    Article  Google Scholar 

  65. P.S. Zangabad, S. Mirkiani, S. Shahsavari et al., Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotech. Rev. 7, 95–122 (2018)

    Article  Google Scholar 

  66. W.L. Tang, W.H. Tang, S.D. Li, Cancer theranostic applications of lipid-based nanoparticles. Drug Discov. Today 23, 1159–1166 (2018)

    Article  Google Scholar 

  67. S. Bayda, M. Hadla, G. Corona et al., Inorganic nanoparticles for cancer therapy: a transition from lab to clinic. Curr. Med. Chem. 25, 4269–4303 (2018)

    Article  Google Scholar 

  68. C.C. Lee, E.R. Gillies, M.E. Fox et al., A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc. Nat. Acad. Sci. 103, 16649–16654 (2006)

    Article  Google Scholar 

  69. J.Y. Lee, D.Y. Choi, M.Y. Cho et al., Targeted theranostic nanoparticles: receptor-mediated entry into cells, pH-induced signal generation and cytosolic delivery. Small 10, 901–906 (2013)

    Article  Google Scholar 

  70. X. Liu, B. Chen, X. Li et al., Self-assembly of BODIPY based pH-sensitive near-infrared polymeric micelles for drug-controlled delivery and fluorescence imaging applications. Nanoscale 7, 16399–16416 (2015)

    Article  Google Scholar 

  71. M. Liong, J. Lu, M. Kovochich et al., Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2, 889–896 (2008)

    Article  Google Scholar 

  72. E. Phillips, O. Penate-Medina, P.B. Zanzonico, et al., Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 6, 260ra149–260ra149 (2014)

    Google Scholar 

  73. P. Singh, S. Pandit, V.R.S.S. Mokkapati et al., Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci. 19, 1979 (2018)

    Article  Google Scholar 

  74. C.G. Hadjipanayis, R. Machaidze, M. Kaluzova et al., EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Can. Res. 70, 6303–6312 (2010)

    Article  Google Scholar 

  75. C. Ansari, G.A. Tikhomirov, S.H. Hong et al., Development of novel tumor-targeted theranostic nanoparticles activated by membrane-type matrix metalloproteinases for combined cancer magnetic resonance imaging and therapy. Small 10, 566–575 (2013)

    Article  Google Scholar 

  76. G. Von Maltzahn, J.H. Park, A. Agrawal et al., Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Can. Res. 69, 3892–3900 (2009)

    Article  Google Scholar 

  77. C. Matea, T. Mocan, F. Tabaran et al., Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomed. 12, 5421–5431 (2017)

    Article  Google Scholar 

  78. M.E. Davis, J.E. Zuckerman, C.H.J. Choi et al., Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070 (2010)

    Article  Google Scholar 

  79. S.K. Libutti, G.F. Paciotti, A.A. Byrnes et al., Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin. Can. Res. 16, 6139–6149 (2010)

    Article  Google Scholar 

  80. D. Ling, W. Park, S. Park et al., Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J. Am. Chem. Soc. 136, 5647–5655 (2014)

    Article  Google Scholar 

  81. M. Kester, Y. Heakal, T. Fox et al., Calcium phosphate nanocomposite particles for in vitro imaging and encapsulated chemotherapeutic drug delivery to cancer cells. Nan. Lett. 8, 4116–4121 (2008)

    Article  Google Scholar 

  82. K. Yang, S. Zhang, G. Zhang et al., Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano. Lett. 10, 3318–3323 (2010)

    Article  Google Scholar 

  83. J.K. Kim, K.J. Choi, M. Lee et al., Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer- and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials 33, 207–217 (2012)

    Article  Google Scholar 

  84. D.G. You, V.G. Deepagan, W. Um et al., ROS-generating TiO2 nanoparticles for non-invasive sonodynamic therapy of cancer. Sci. Rep. 6, 23200 (2016)

    Article  Google Scholar 

  85. S. Lee, H. Koo, J.H. Na et al., Chemical tumor-targeting of nanoparticles based on metabolic glycoengineering and click chemistry. ACS Nano 8, 2048–2063 (2014)

    Article  Google Scholar 

  86. B. Kang, M.B. Zheng, P. Song et al., Subcellular-scale drug transport via ultrasound-degradable mesoporous nanosilicon to bypass cancer drug resistance. Small 13, 1604228 (2017)

    Article  Google Scholar 

  87. R. Duncan, The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2, 347–360 (2003)

    Article  Google Scholar 

  88. D.K. Mishra, R. Shandilya, P.K. Mishra, Lipid based nanocarriers: a translational perspective. Nanomed. Nanotech. Biol. Med. 14, 2023–2050 (2018)

    Google Scholar 

  89. A. El-Aneed, An overview of current delivery systems in cancer gene therapy. J. Contr. Rel. 94, 1–14 (2004)

    Article  Google Scholar 

  90. L. Bromberg, Polymeric micelles in oral chemotherapy. J. Contr. Rel. 128, 99–112 (2008)

    Article  Google Scholar 

  91. V.P. Torchilin, Structure and design of polymeric surfactant-based drug delivery systems. J. Contr. Rel. 73, 137–172 (2001)

    Article  Google Scholar 

  92. M.L. Adams, A. Lavasanifar, G.S. Kwon, Amphiphilic block copolymers for drug delivery. J. Pharmaceut. Sci. 92, 1343–1355 (2003)

    Article  Google Scholar 

  93. T. Merdan, J. Kopecek, T. Kissel, Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv. Drug Deliv. Rev. 54, 715–758 (2002)

    Article  Google Scholar 

  94. D.J. Glover, H.J. Lipps, D.A. Jans, Towards safe, non-viral therapeutic gene expression in humans. Nat. Rev. Gen. 6, 299–310 (2005)

    Article  Google Scholar 

  95. M.D. Brown, A.G. Schatzlein, I.F. Uchegbu, Gene delivery with synthetic (non-viral) carriers. Int. J. Pharmaceut. 229, 1–21 (2001)

    Article  Google Scholar 

  96. D. Lechardeur, A. Verkman, G. Lukacs, Intracellular routing of plasmid DNA during non-viral gene transfer. Adv. Drug Deliv. Rev. 57, 755–767 (2005)

    Article  Google Scholar 

  97. R. Kircheis, S. Schuller, S. Brunner et al., Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. J. Gen. Med. 1, 111–120 (1999)

    Article  Google Scholar 

  98. T. Blessing, M. Kursa, R. Holzhauser et al., Different strategies for formation of PEGylated EGF-conjugated PEI/DNA complexes for targeted gene delivery. Bioconj. Chem. 12, 529–537 (2001)

    Article  Google Scholar 

  99. M.A. Wolfert, E.H. Schacht, V. Toncheva et al., Characterization of vectors for gene therapy formed by self-assembly of DNA with synthetic block co-polymers. Hum. Gen. Ther. 7, 2123–2133 (1996)

    Article  Google Scholar 

  100. Y.H. Choi, F. Liu, J.S. Kim et al., Polyethylene glycol-grafted poly-l-lysine as polymeric gene carrier. J. Contr. Rel. 54, 39–48 (1998)

    Article  Google Scholar 

  101. N. Shimizu, J. Chen, S. Gamou et al., Immunogene approach toward cancer therapy using erythrocyte growth factor receptor-mediated gene delivery. Can. Gen. Ther. 3, 113–120 (1996)

    Google Scholar 

  102. M. Hashida, S. Takemura, M. Nishikawa et al., Targeted delivery of plasmid DNA complexed with galactosylated poly(l-lysine). J. Contr. Rel. 53, 301–310 (1998)

    Article  Google Scholar 

  103. J.M. Benns, J.S. Choi, R.I. Mahato et al., pH-sensitive cationic polymer gene delivery vehicle: N-Ac-poly (l-histidine)-graft-poly (l-lysine) comb shaped polymer. Bioconj. Chem. 11, 637–645 (2000)

    Article  Google Scholar 

  104. J. Kim, A. Maruyama, T. Akaike et al., Terplex DNA delivery system as a gene carrier. Pharmaceut. Res. 15, 116–121 (1998)

    Article  Google Scholar 

  105. S. Gao, J. Chen, L. Dong et al., Targeting delivery of oligonucleotide and plasmid DNA to hepatocyte via galactosylated chitosan vector. Eur. J. Pharmaceut. Biopharmaceut. 60, 327–334 (2005)

    Article  Google Scholar 

  106. M. Lavertu, S. Methot, N. Tran-Khanh et al., High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials 27, 4815–4824 (2006)

    Article  Google Scholar 

  107. M. Huang, C.W. Fong, E. Khor et al., Transfection efficiency of chitosan vectors: effect of polymer molecular weight and degree of deacetylation. J. Contr. Rel. 106, 391–406 (2005)

    Article  Google Scholar 

  108. H. Sang Yoo, J. Eun Lee, H. Chung et al., Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery. J. Contr. Rel. 103, 235–243 (2005)

    Article  Google Scholar 

  109. S. Mansouri, Y. Cuie, F. Winnik et al., Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials 27, 2060–2065 (2006)

    Article  Google Scholar 

  110. T. Kean, S. Roth, M. Thanou, Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J. Contr. Rel. 103, 643–653 (2005)

    Article  Google Scholar 

  111. M. Koping-Hoggard, I. Tubulekas, H. Guan, et al., Chitosan as a nonviral gene delivery system. Structure–property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gen. Ther. 8, 1108–1121 (2001)

    Google Scholar 

  112. S.H. Pun, N.C. Bellocq, A. Liu et al., Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconj. Chem. 15, 831–840 (2004)

    Article  Google Scholar 

  113. R.K. Tekade, T. Dutta, V. Gajbhiye et al., Exploring dendrimer towards dual drug delivery: pH responsive simultaneous drug-release kinetics. J. Microencap. 26, 287–296 (2009)

    Article  Google Scholar 

  114. D. Luong, P. Kesharwani, R. Deshmukh et al., PEGylated PAMAM dendrimers: enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Act. Biomat. 43, 14–29 (2016)

    Article  Google Scholar 

  115. N. Chaniotakis, K. Thermos, M. Kalomiraki, Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int. J. Nanomed. 11, 1–12 (2015)

    Article  Google Scholar 

  116. Y. Cheng, Z. Xu, M. Ma et al., Dendrimers as drug carriers: applications in different routes of drug administration. J. Pharmaceut. Sci. 97, 123–143 (2008)

    Article  Google Scholar 

  117. D. Pandita, N. Poonia, S. Kumar et al., Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J. Pharm. Bioal. Sci. 6, 139 (2014)

    Article  Google Scholar 

  118. Z. Zhou, X. Ma, C.J. Murphy et al., Molecularly precise dendrimer-drug conjugates with tunable drug release for cancer therapy. Ang. Chem. Int. Ed. 53, 10949–10955 (2014)

    Article  Google Scholar 

  119. S. Hussain, Nanomedicine for treatment of lung cancer. Adv. Exp. Med. Biol. 890, 137–147 (2015)

    Article  Google Scholar 

  120. C.M. Paleos, D. Tsiourvas, Z. Sideratou, Triphenylphosphonium decorated liposomes and dendritic polymers: prospective second-generation drug delivery systems for targeting mitochondria. Mol. Pharmaceut. 13, 2233–2241 (2016)

    Article  Google Scholar 

  121. J.Y.C. Edgar, H. Wang, Introduction for design of nanoparticle based drug delivery systems. Curr. Pharmaceut. Des. 23, 2108–2112 (2017)

    Article  Google Scholar 

  122. T.G. Mason, J.N. Wilking, K. Meleson et al., Nanoemulsions: formation, structure, and physical properties. Phys. Condens. Mat. 18, R635–R666 (2006)

    Article  Google Scholar 

  123. H.J. Gi, S.N. Chen, J.S. Hwang et al., Studies of formation and interface of oil-water microemulsion. Chin. J. Phys. 30, 665–678 (1992)

    Google Scholar 

  124. H. Maeda, J. Wu, T. Sawa et al., Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Contr. Rel. 65, 271–284 (2000)

    Article  Google Scholar 

  125. G.P. Kumar, A. Divya, Nanoemulsion based targeting in cancer therapeutics. Med. Chem. 5, 272–284 (2015)

    Google Scholar 

  126. E. Sanchez-Lopez, M. Guerra, J. Dias-Ferreira et al., Current applications of nanoemulsions in cancer therapeutics. Nanomaterials 9, 821 (2019)

    Article  Google Scholar 

  127. J.E. Kim, Y.J. Park, Improved antitumor efficacy of hyaluronic acid-complexed paclitaxel nanoemulsions in treating non-small cell lung cancer. Biomol. Ther. 25, 411–416 (2017)

    Article  Google Scholar 

  128. C. Pucci, C. Martinelli, G. Ciofani, What does the future hold for chemotherapy with the use of lipid-based nanocarriers? Fut. Oncol. 16, 81–84 (2019)

    Article  Google Scholar 

  129. A. Puri, K. Loomis, B. Smith et al., Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst. 26, 523–580 (2009)

    Article  Google Scholar 

  130. L. Bayon-Cordero, I. Alkorta, L. Arana, Application of solid lipid nanoparticles to improve the effciency of anticancer drugs. Nanomaterials 9, 474 (2019)

    Article  Google Scholar 

  131. A. Ashtari, F. Niazvand, L. Khorsandi, Chemotherapy drugs based on solid lipid nanoparticles for breast cancer treatment. Medicina 56, 694 (2020)

    Article  Google Scholar 

  132. Y. Zhuang, B. Xu, F. Huang et al., Solid lipid nanoparticles of anticancer drugs against MCF-7 cell line and a murine breast cancer model. Pharmazie 67, 925–929 (2012)

    Google Scholar 

  133. N.K. Garg, B. Singh, A. Jain et al., Fucose decorated solid-lipid nanocarriers mediate efficient delivery of methotrexate in breast cancer therapeutics. Coll. Surf. B Bioint. 146, 114–126 (2016)

    Article  Google Scholar 

  134. M.S. Oliveira, B. Aryasomayajula, B. Pattni et al., Solid lipid nanoparticles co-loaded with doxorubicin and α-tocopherol succinate are effective against drug-resistant cancer cells in monolayer and 3-D spheroid cancer cell models. Int. J. Pharm. 512, 292–300 (2016)

    Article  Google Scholar 

  135. M. Rizwanullah, J. Ahmad, S. Amin, Nanostructured lipid carriers: a novel platform for chemotherapeutics. Curr. Drug Deliv. 13, 4–26 (2016)

    Article  Google Scholar 

  136. S. Selvamuthukumar, R. Velmurugan, Nanostructured lipid carriers: a potential drug carrier for cancer chemotherapy. Lip. Heal Dis. 11, 159 (2012)

    Article  Google Scholar 

  137. L. Zhang, Y. Li, J.C. Yu, Chemical modification of inorganic nanostructures for targeted and controlled drug delivery in cancer treatment. J. Mater. Chem. B 2, 452–470 (2014)

    Article  Google Scholar 

  138. J. Conde, J.T. Dias, V. Graza et al., Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front. Chem. 2, 48 (2014)

    Article  Google Scholar 

  139. E. Abbasi, T. Kafshdooz, M. Bakhtiary et al., Biomedical and biological applications of quantum dots. Artif. Cell Nanomed. Biotechnol. 44, 885–891 (2016)

    Google Scholar 

  140. K.S. Shabestari, M. Farshbaf, A. Akbarzadeh et al., Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy. Artif. Cell Nanomed. Biotechnol. 45, 6–17 (2016)

    Article  Google Scholar 

  141. D.A. Giljohann, D.S. Seferos, W.L. Daniel et al., Gold nanoparticles for biology and medicine. Ang. Chem. Int. Ed. 49, 3280–3294 (2010)

    Article  Google Scholar 

  142. P.K. Jain, X. Huang, I.H. El-Sayed et al., Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008)

    Article  Google Scholar 

  143. N.S. Abadeer, C.J. Murphy, Recent progress in cancer thermal therapy using gold nanoparticles. J. Phys. Chem. C 120, 4691–4716 (2016)

    Article  Google Scholar 

  144. H. Chugh, D. Sood, I. Chandra et al., Role of gold and silver nanoparticles in cancer nano-medicine. Artif. Cell Nanomed. Biotechnol. 46, 1210–1220 (2018)

    Article  Google Scholar 

  145. R. Wang, H. Yang, R. Fu et al., Biomimetic upconversion nanoparticles and gold nanoparticles for novel simultaneous dual-modal imaging-guided photothermal therapy of cancer. Cancers 12(11), 3136 (2020)

    Article  Google Scholar 

  146. H.J. Klasen, Historical review of the use of silver in the treatment of burns I. Early uses. Burns 26, 117–130 (2000)

    Article  Google Scholar 

  147. Y. Li, Y. Chang, X. Lian, et al., Silver nanoparticles for enhanced cancer theranostics: in vitro and in vivo perspectives. J. Biomed. Nanotech. 14, 1515–1542 (2018)

    Google Scholar 

  148. D. Zhao, X. Sun, J. Tong et al., A novel multifunctional nanocomposite C225-conjugated Fe3O4/Ag enhances the sensitivity of nasopharyngeal carcinoma cells to radiotherapy. Act. Biochim. Biophys. Sin. 44, 678–684 (2012)

    Article  Google Scholar 

  149. M. Morais, A.L. Teixeira, F. Dias et al., Cytotoxic effect of silver nanoparticles synthesized by green methods in cancer. J. Med. Chem. 63, 14308–14335 (2020)

    Article  Google Scholar 

  150. P. Wu, Y. Gao, Y. Lu et al., High specific detection and near-infrared photothermal therapy of lung cancer cells with high SERS active aptamer–silver–gold shell–core nanostructures. Analyst 138, 6501 (2013)

    Article  Google Scholar 

  151. D. Guo, L. Zhu, Z. Huang et al., Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials 34, 7884–7894 (2013)

    Article  Google Scholar 

  152. S. Gurunathan, J.W. Han, V. Eppakayala et al., Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Biomed. Res. Int. 2013, 535796 (2013)

    Article  Google Scholar 

  153. T. Vangijzegem, D. Stanicki, S. Laurent, Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Exp. Op. Drug. Deliv. 16, 69–78 (2018)

    Article  Google Scholar 

  154. B. Chertok, B.A. Moffat, A.E. David et al., Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29, 487–496 (2008)

    Article  Google Scholar 

  155. M.E. Kooi, V.C. Cappendijk, K.B.J.M. Cleutjens et al., Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circul 107, 2453–2458 (2003)

    Article  Google Scholar 

  156. M. Arruebo, R. Fernandez-Pacheco, M.R. Ibarra et al., Magnetic nanoparticles for drug delivery. Nan. Today 2, 22–32 (2007)

    Article  Google Scholar 

  157. A.S. Arbab, L.A. Bashaw, B.R. Miller et al., Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 229, 838–846 (2003)

    Article  Google Scholar 

  158. C. Sun, J. Lee, M. Zhang, Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev. 60, 1252–1265 (2008)

    Article  Google Scholar 

  159. C.J. Diederich, Thermal ablation and high-temperature thermal therapy: overview of technology and clinical implementation. Int. J. Hyperther. 21, 745–753 (2005)

    Article  Google Scholar 

  160. L. Zhu, Z. Zhou, H. Mao, L. Yang, Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine 12, 73–87 (2017)

    Article  Google Scholar 

  161. P. Juzenas, W. Chen, Y.P. Sun et al., Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Deliv. Rev. 60, 1600–1614 (2008)

    Article  Google Scholar 

  162. K.H. Chen, S. Wu, C.M. Cheng, Electrical properties of the thin films using a low temperature supercritical carbon dioxide fluid process. Int. J. Chem. Eng. App. 6, 455–459 (2015)

    Google Scholar 

  163. W. Yu, N. Yu, Z. Wang et al., Chitosan-mediated green synthesis and folic-acid modification of CuS quantum dots for photoacoustic imaging guided photothermal therapy of tumor. J. Coll. Interf. Sci. 555, 480–488 (2019)

    Article  Google Scholar 

  164. W. Guo, Z. Qiu, C. Guo et al., Multifunctional theranostic agent of Cu2(OH)PO4 quantum dots for photoacoustic image-guided photothermal/photodynamic combination cancer therapy. ACS App. Mat. Interf. 9, 9348–9358 (2017)

    Article  Google Scholar 

  165. B. Hosnedlova, M. Kepinska, S. Skalickova et al., Nano-selenium and its nanomedicine applications: a critical review. Int. J. Nanomed. 13, 2107–2128 (2018)

    Article  Google Scholar 

  166. D.S. Karaman, M.P. Sarparanta, J.M. Rosenholm et al., Multimodality imaging of silica and silicon materials in vivo. Adv. Mat. 30, 1703651 (2018)

    Article  Google Scholar 

  167. J. Saleem, L. Wang, C. Chen, Carbon-based nanomaterials for cancer therapy via targeting tumor microenvironment. Adv. Heal Mat. 7, e1800525 (2018)

    Article  Google Scholar 

  168. A. Bianco, K. Kostarelos, M. Prato, Applications of carbon nanotubes in drug delivery. Curr. Op. Chem. Biol. 9, 674–679 (2005)

    Article  Google Scholar 

  169. C.H. Wang, S.H. Chiou, C.P. Chou, et al., Photothermolysis of glioblastoma stem-like cells targeted by carbon nanotubes conjugated with CD133 monoclonal antibody. Nanomed. Nanotech. Biol. Med. 7, 69–79 (2011)

    Google Scholar 

  170. T. Yang, Z. Wu, P. Wang et al., A large-inner-diameter multi-walled carbon nanotube-based dual-drug delivery system with pH-sensitive release properties. J. Mat. Sci. Mat. Med. 28, 110 (2017)

    Article  Google Scholar 

  171. C. Spinato, A.P.R. de Garibay, M. Kierkowicz et al., Design of antibody-functionalized carbon nanotubes filled with radioactivable metals towards a targeted anticancer therapy. Nanoscale 8, 12626–12638 (2016)

    Article  Google Scholar 

  172. J.T.-W. Wang, R. Klippstein, M. Martincic, et al., Neutron activated 153Sm sealed in carbon nanocapsules for in-vivo imaging and cancer radiotherapy. ACS Nano. 14, 129–141 (2020)

    Google Scholar 

  173. J.T.-W. Wang, C. Spinato, R. Klippstein, et al., Neutron irradiated antibody-functionalized carbon nanocapsules for target cancer radiotherapy. Carbon 162, 410–422 (2020)

    Google Scholar 

  174. M. Fiorillo, A.F. Verre, M. Iliut et al., Graphene oxide selectively targets cancer stem cells, across multiple tumor types: Implications for non-toxic cancer treatment, via “differentiation-based nano-therapy.” Oncotarget 6, 3553–3562 (2015)

    Article  Google Scholar 

  175. Z. Wei, X. Yin, Y. Cai et al., Antitumor effect of a Pt-loaded nanocomposite based on graphene quantum dots combats hypoxia-induced chemoresistance of oral squamous cell carcinoma. Int. J. Nanomed. 13, 1505–1524 (2018)

    Article  Google Scholar 

  176. D. De Melo-Diogo, R. Lima-Sousa, C.G. Alves et al., Graphene family nanomaterials for application in cancer combination photothermal therapy. Biomat. Sci. 7, 3534–3551 (2019)

    Article  Google Scholar 

  177. M.J. Mitchell, R.K. Jain, R. Langer, Engineering and physical sciences in oncology: challenges and opportunities. Nat. Rev. Cancer 17, 659–675 (2017)

    Article  Google Scholar 

  178. R.S. Riley, C.H. June, R. Langer et al., Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 18, 175–196 (2019)

    Article  Google Scholar 

  179. P.N. Navya, A. Kaphle, S.P. Srinivas et al., Current trends and challenges in cancer management and therapy using designer nanomaterials. Nan. Conv. 6, 23 (2019)

    Article  Google Scholar 

  180. V.K. Chaturvedi, A. Singh, V.K. Singh et al., Cancer nanotechnology: a new revolution for cancer diagnosis and therapy. Curr. Drug Met. 20, 416–429 (2019)

    Article  Google Scholar 

  181. Y. Li, C. Ayala-Orozco, P.R. Rauta, et al., The application of nanotechnology in enhancing immunotherapy for cancer treatment: current effects and perspective. Nanoscale 11, 17157–17178 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenakshi Kanwar Chauhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, R., Ahmed, F., Chauhan, M. (2023). Theranostic Approaches for Diagnosis and Treatment of Cancer: An Update. In: Malviya, R., Sundram, S. (eds) Targeted Cancer Therapy in Biomedical Engineering. Biological and Medical Physics, Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-9786-0_18

Download citation

Publish with us

Policies and ethics