Skip to main content

Chitosan Nanoparticles: A Potential Biomedical Device

  • Chapter
  • First Online:
Chitosan Nanocomposites

Abstract

Chitosan nanoparticles (chitosan-based nanoparticles; chitosan nanostructures; ChNPs) constitute a very interesting and promising group of bio-based compounds, which have attracted a lot of attention in the last decades. They are more and more commonly used in various biomedical devices, especially in cancer diagnostics (fluorescent endoscopic diagnostics, detecting cancer cells), wound dressings, as the glucose detection sensor and the histamine biosensor, in bone tissue engineering and dentistry, which are presented in details in this chapter. Such a variety of application possibilities is mainly due to the properties of chitosan, which is characterized by high biocompatibility, biodegradability, non-toxicity, as well as the great potential as nanocarriers encapsulating active substances and providing a controlled release process. This chapter presents an overview of ChNPs preparation methods, mainly: reversed micelles, emulsification and crosslinking, SCASA, spray drying, phase inversion precipitation, ionic gelation, and emulsion-droplet coalescence. Offering a lot of benefits, nanotechnology for medical and biomedical science has become the foundation for the development and improvement of human life. The safety of nanoparticles which can be toxic to the environment, organisms, and cells, had to be taken into account in their safety assessment in the biomedical fields. According to this, the overall safety of these materials is also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Yanat, K. Schro, Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging 161 (2021). https://doi.org/10.1016/j.reactfunctpolym.2021.104849

  2. M. Kafshgari, M. Khorram, Preparation of alginate and chitosan nanoparticles using a new reverse micellar system. Iran Polym. Petrochem. Inst. 99–107 (2012). https://doi.org/10.1007/s13726-011-0010-1

  3. A. Grenha, Chitosan nanoparticles : a survey of preparation methods. J. Drug Targenting 20, 291–300 (2012). https://doi.org/10.3109/1061186X.2011.654121

    Article  CAS  Google Scholar 

  4. M.H. ElShabouri, Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int. J. Pharm. 249, 101–108 (2002)

    Article  CAS  PubMed  Google Scholar 

  5. K. Lewandowska, M. Szulc, Rheological and film-forming properties of chitosan composites. Int. J. Mol. Sci. 23, 8763 (2022). https://doi.org/10.3390/IJMS23158763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. K. Nagpal, S.K. Singh, D.N. Mishra, Chitosan nanoparticles: a promising system in novel drug delivery. Chem. Pharm. Bull. (Tokyo) 58, 1423–1430 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. S. Naskar, K. Kuotsu, S. Sharma, Chitosan-based nanoparticles as drug delivery systems: a review on two decades of research. J. Drug Target 27, 379–393 (2018)

    Article  PubMed  Google Scholar 

  8. R.A.A. Muzzarelli, Chitosan-based dietary foods. Carbohydr. Polym. 29, 309–316 (1996)

    Article  CAS  Google Scholar 

  9. A.A. Zaki, Dielectric and optical properties of chitosan-Pb and chitosan-Bi nanocomposites. J. Mater. Sci.: Mater. Electron. 32, 3603–3611 (2021). https://doi.org/10.1007/s10854-020-05107-7

    Article  CAS  Google Scholar 

  10. J. Dutta, S. Tripathi, P.K. Dutta, F. Science, Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications. Food Sci. Technol. Int. 18 (2012). https://doi.org/10.1177/1082013211399195

  11. S.J. Yang, M.J. Shieh, F.H. Lin et al., Colorectal cancer cell detection by 5-aminolaevulinic acid-loaded chitosan nano-particles. Cancer Lett. 273, 210–220 (2009). https://doi.org/10.1016/J.CANLET.2008.08.014

    Article  CAS  PubMed  Google Scholar 

  12. I. Karakurt, K. Ozaltin, H. Pištěková et al., Effect of saccharides coating on antibacterial potential and drug loading and releasing capability of plasma treated polylactic acid films. Int. J. Mol. Sci. 23, 8821 (2022). https://doi.org/10.3390/IJMS23158821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. P. Hu, Q. Lei, S. Duan et al., In-situ formable dextran/chitosan-based hydrogels functionalized with collagen and EGF for diabetic wounds healing. Biomater. Adv. 136. https://doi.org/10.1016/J.BIOADV.2022.212773

  14. A. Ragamin, K.B. Fieten, R.A. Tupker et al., The effectiveness of antibacterial therapeutic clothing based on silver or chitosan as compared with non-antibacterial therapeutic clothing in patients with moderate to severe atopic dermatitis (ABC trial): study protocol for a pragmatic randomized controlled trial. Trials 22 (2021). https://doi.org/10.1186/S13063-021-05836-Y

  15. S.H. Kang, D. Han, S. Kim et al., Hemostasis pad combined with compression device after transradial coronary procedures: a randomized controlled trial. PLoS One 12 (2017). https://doi.org/10.1371/JOURNAL.PONE.0181099

  16. L. Wang, Y. Zhen, X.L. Lu et al., Dendritic copper-cobalt nanostructures/reduced graphene oxide-chitosan modified glassy carbon electrode for glucose sensing. Sens Actuators B Chem. 195, 1–7 (2014)

    Article  CAS  Google Scholar 

  17. X. Lin, J. Liu, F. Zhou et al., Poly(2-hydroxyethyl methacrylate-co-quaternary ammonium salt chitosan) hydrogel: a potential contact lens material with tear protein deposition resistance and antimicrobial activity. Biomater. Adv. 136, 212787 (2022). https://doi.org/10.1016/J.BIOADV.2022.212787

    Article  CAS  PubMed  Google Scholar 

  18. G. Oberdorster, Safety assessment for nanotechnology and nanomedicine : concepts of nanotoxicology. J. Int. Med. 89–105 (2009). https://doi.org/10.1111/j.1365-2796.2009.02187.x

  19. T. Banerjee, S. Mitra, A. Kumar, Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. Int. J. Pharm. 243, 93–105 (2002)

    Article  CAS  PubMed  Google Scholar 

  20. Y. Ohya, M. Shiratani, H. Kobayashi, Behavior of 5-fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity. J. Macromol. Sci. 37–41 (2012). https://doi.org/10.1080/10601329409349743

  21. N. Hijazi, Moigne N Le, Rodier E, et al (2018) Biocomposite films based on poly (lactic acid) and chitosan nanoparticles: elaboration , microstructural and thermal characterization. Polym. Eng. Sci. 1–11. https://doi.org/10.1002/pen.24983

  22. N. Hijazi, E. Rodier, J. Letourneau et al., Chitosan nanoparticles generation using CO2 assisted processes. J. Supercrit. Fluids 95, 118–128 (2014). https://doi.org/10.1016/j.supflu.2014.08.003

    Article  CAS  Google Scholar 

  23. E. Basaran, E. Yenilmez, M.S. Berkman et al., Chitosan nanoparticles for ocular delivery of cyclosporine A. J. Microencapsul. 2048, 1–9 (2013). https://doi.org/10.3109/02652048.2013.805839

    Article  CAS  Google Scholar 

  24. L.T.K. Ngan, S. Wang, P.M. Luong et al., Preparation of chitosan nanoparticles by spray drying, and their antibacterial activity. Res. Chem. Int. 40, 2165–2175 (2014). https://doi.org/10.1007/s11164-014-1594-9

    Article  CAS  Google Scholar 

  25. S. Sajeesh, C.P. Sharma, Novel pH responsive polymethacrylic acid – chitosan – polyethylene glycol nanoparticles for oral peptide delivery, in Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, pp 298–305 (2005)

    Google Scholar 

  26. S. Sajeesh, C.P. Sharma, Cyclodextrin – insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Int. J. Pharm. 325, 147–154 (2006). https://doi.org/10.1016/j.ijpharm.2006.06.019

    Article  CAS  PubMed  Google Scholar 

  27. W. Fan, W. Yan, Z. Xu, H. Ni, Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf. B Biointerfaces 90, 21–27 (2012). https://doi.org/10.1016/j.colsurfb.2011.09.042

    Article  CAS  PubMed  Google Scholar 

  28. E.M.A. Hejjaji, A.M. Smith, G.A. Morris, Evaluation of the mucoadhesive properties of chitosan nanoparticles prepared using different chitosan to tripolyphosphate (CS: TPP) ratios. Int. J. Biol. Macromol. 120, 1610–1617 (2018). https://doi.org/10.1016/j.ijbiomac.2018.09.185

    Article  CAS  PubMed  Google Scholar 

  29. H. Tokumitsu, H. Ichikawa, Y. Fukumori, Chitosan-gadopentetic acid complex nanoparticles for gadolinium neutron-capture therapy of cancer: preparation by novel emulsion-droplet coalescence technique and characterization. Pharm. Res. 16, 1830–1835 (1999). https://doi.org/10.1023/A:1018995124527

    Article  CAS  PubMed  Google Scholar 

  30. H. Ichikawa, H. Tokumitsu, M. Miyamoto, Nanoparticles for neutron capture therapy of cancer, in Nanotechnologies for the Life Sciences (2006), pp. 104–105

    Google Scholar 

  31. S.-J. Yang, F.-H. Lin, K.-C. Tsai et al., Folic acid-conjugated chitosan nanoparticles enhanced protoporphyrin IX accumulation in colorectal cancer cells. Bioconjug. Chem. 21, 679–689 (2010)

    Article  CAS  PubMed  Google Scholar 

  32. S.-J. Yang, F.-H. Lin, H.-M. Tsai et al., Alginate-folic acid-modified chitosan nanoparticles for photodynamic detection of intestinal neoplasms. Biomaterials 32, 2174–2182 (2011)

    Article  CAS  PubMed  Google Scholar 

  33. S.J. Yang, C.F. Lin, M.L. Kuo, C.T. Tan, Photodynamic detection of oral cancers with high-performance chitosan-based nanoparticles. Biomacromol 14, 3183–3191 (2013). https://doi.org/10.1021/BM400820S

    Article  CAS  Google Scholar 

  34. I.-C. Sun, C.-H. Ahn, K. Kim, S. Emelianov, Photoacoustic imaging of cancer cells with glycol-chitosan-coated gold nanoparticles as contrast agents. J. Biomed. Opt. 24, 1 (2019). https://doi.org/10.1117/1.JBO.24.12.121903

    Article  CAS  PubMed  Google Scholar 

  35. A. Ładniak, M. Jurak, Physicochemical AW-C and SA, 2021 undefined physicochemical characteristics of chitosan-TiO2 biomaterial , in Wettability and Biocompatibility, vol. 2. Elsevier

    Google Scholar 

  36. Y.H. Lin, J.H. Lin, Y.S. Hong, Development of chitosan/poly-γ-glutamic acid/pluronic/curcumin nanoparticles in chitosan dressings for wound regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 105, 81–90 (2017). https://doi.org/10.1002/JBM.B.33394

    Article  CAS  PubMed  Google Scholar 

  37. A. Mohandas, B.S. Anisha, K.P. Chennazhi, R. Jayakumar, Chitosan-hyaluronic acid/VEGF loaded fibrin nanoparticles composite sponges for enhancing angiogenesis in wounds. Colloids Surf. B Biointerfaces 127, 105–113 (2015). https://doi.org/10.1016/J.COLSURFB.2015.01.024

    Article  CAS  PubMed  Google Scholar 

  38. S.S. Biranje, P.v. Madiwale, K.C. Patankar et al., Hemostasis and anti-necrotic activity of wound-healing dressing containing chitosan nanoparticles. Int. J. Biol. Macromol. 121, 936–946 (2019). https://doi.org/10.1016/J.IJBIOMAC.2018.10.125

  39. N. Masood, R. Ahmed, M. Tariq et al., Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int. J. Pharm. 559, 23–36 (2019). https://doi.org/10.1016/J.IJPHARM.2019.01.019

    Article  CAS  PubMed  Google Scholar 

  40. X. Wang, F. Cheng, J. Gao, L. Wang, Antibacterial wound dressing from chitosan/polyethylene oxide nanofibers mats embedded with silver nanoparticles. J. Biomater. Appl. 29, 1086–1095 (2015). https://doi.org/10.1177/0885328214554665

    Article  CAS  PubMed  Google Scholar 

  41. S.M. Sharaf, S.E.D. AlMoftyl, E.S.M. El-Sayed et al., Deacetylated cellulose acetate nanofibrous dressing loaded with chitosan/propolis nanoparticles for the effective treatment of burn wounds. Int. J. Biol. Macromol. 193, 2029–2037 (2021). https://doi.org/10.1016/J.IJBIOMAC.2021.11.034

    Article  CAS  PubMed  Google Scholar 

  42. G.S. ElFeky, S.S. Sharaf, A. el Shafei, A.A. Hegazy, Using chitosan nanoparticles as drug carriers for the development of a silver sulfadiazine wound dressing. Carbohydr. Polym. 158, 11–19 (2017). https://doi.org/10.1016/J.CARBPOL.2016.11.054

    Article  CAS  PubMed  Google Scholar 

  43. R.A. Farghali, A.M. Fekry, R.A. Ahmed, H.K.A. Elhakim, Corrosion resistance of Ti modified by chitosan-gold nanoparticles for orthopedic implantation. Int. J. Biol. Macromol. 79, 787–799 (2015). https://doi.org/10.1016/J.IJBIOMAC.2015.04.078

    Article  CAS  PubMed  Google Scholar 

  44. M. Ishihara, V.Q. Nguyen, Y. Mori et al., Adsorption of silver nanoparticles onto different surface structures of chitin/chitosan and correlations with antimicrobial activities. Int. J. Mol. Sci. 16, 13973–13988 (2015). https://doi.org/10.3390/IJMS160613973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. P. Zhou, Z. Xia, C. Qi et al., Construction of chitosan/Ag nanocomposite sponges and their properties. Int. J. Biol. Macromol. 192, 272–277 (2021). https://doi.org/10.1016/J.IJBIOMAC.2021.10.011

    Article  CAS  PubMed  Google Scholar 

  46. B. Anisha, D. Sankar, A. Mohandas et al., Chitosan-hyaluronan/nano chondroitin sulfate ternary composite sponges for medical use. Carbohydr. Polym. 92, 1470–1476 (2013)

    Google Scholar 

  47. A. Bal-Ozturk, O. KaralYilmaz, Z.P. Akguner et al., Sponge-like chitosan-based nanostructured antibacterial material as a topical hemostat. J. Appl. Polym. Sci. 136, 47522 (2019). https://doi.org/10.1002/APP.47522

    Article  Google Scholar 

  48. M. Rahimi, R. Ahmadi, H. SamadiKafil, V. Shafiei-Irannejad, A novel bioactive quaternized chitosan and its silver-containing nanocomposites as a potent antimicrobial wound dressing: structural and biological properties. Mater. Sci. Eng. C 101, 360–369 (2019). https://doi.org/10.1016/J.MSEC.2019.03.092

    Article  CAS  Google Scholar 

  49. N.D. Tien, T. Geng, C.A. Heyward et al., Solution blow spinning of highly deacetylated chitosan nanofiber scaffolds for dermal wound healing. Biomater. Adv. 137 (2022). https://doi.org/10.1016/J.BIOADV.2022.212871

  50. A. Regiel-Futyra, M. Kus-Lis, V. Sebastian et al., Development of noncytotoxic chitosan−gold nanocomposites as efficient antibacterial materials (2014). https://doi.org/10.1021/am508094e

  51. N. Cai, C. Li, C. Han et al., Tailoring mechanical and antibacterial properties of chitosan/gelatin nanofiber membranes with Fe3O4 nanoparticles for potential wound dressing application. Appl. Surf. Sci. 369, 492–500 (2016). https://doi.org/10.1016/J.APSUSC.2016.02.053

    Article  CAS  Google Scholar 

  52. N. Nontipichet, S. Khumngern, J. Choosang et al., An enzymatic histamine biosensor based on a screen-printed carbon electrode modified with a chitosan-gold nanoparticles composite cryogel on Prussian blue-coated multi-walled carbon nanotubes. Food Chem. 364 (2021). https://doi.org/10.1016/J.FOODCHEM.2021.130396

  53. F. Moradikhah, M. Doosti-Telgerd, I. Shabani et al., Microfluidic fabrication of alendronate-loaded chitosan nanoparticles for enhanced osteogenic differentiation of stem cells. Life Sci. 254 (2020). https://doi.org/10.1016/J.LFS.2020.117768

  54. S. Saravanan, D.K. Sameera, A. Moorthi, N. Selvamurugan, Chitosan scaffolds containing chicken feather keratin nanoparticles for bone tissue engineering. Int. J. Biol. Macromol. 62, 481–486 (2013). https://doi.org/10.1016/J.IJBIOMAC.2013.09.034

    Article  CAS  PubMed  Google Scholar 

  55. S. Ullah, I. Zainol, R.H. Idrus, Incorporation of zinc oxide nanoparticles into chitosan-collagen 3D porous scaffolds: Effect on morphology, mechanical properties and cytocompatibility of 3D porous scaffolds. Int. J. Biol. Macromol. 104, 1020–1029 (2017). https://doi.org/10.1016/J.IJBIOMAC.2017.06.080

    Article  CAS  PubMed  Google Scholar 

  56. Y. Li, Y. Liu, Q. Guo, Silk fibroin hydrogel scaffolds incorporated with chitosan nanoparticles repair articular cartilage defects by regulating TGF-β1 and BMP-2. Arthritis Res. Ther. 23 (2021). https://doi.org/10.1186/S13075-020-02382-X

  57. P. Lin, W. Zhang, D. Chen et al., Electrospun nanofibers containing chitosan-stabilized bovine serum albumin nanoparticles for bone regeneration. Colloids Surf. B Biointerfaces 217 (2022). https://doi.org/10.1016/J.COLSURFB.2022.112680

  58. C.O. Correia, Á.J. Leite, J.F. Mano, Chitosan/bioactive glass nanoparticles scaffolds with shape memory properties. Carbohydr. Polym. 123, 39–45 (2015). https://doi.org/10.1016/J.CARBPOL.2014.12.076

    Article  CAS  PubMed  Google Scholar 

  59. S.A. Mousavi, R. Ghotaslou, S. Kordi et al., Antibacterial and antifungal effects of chitosan nanoparticles on tissue conditioners of complete dentures. Int. J. Biol. Macromol. 118, 881–885 (2018). https://doi.org/10.1016/J.IJBIOMAC.2018.06.151

    Article  CAS  PubMed  Google Scholar 

  60. S.A. Mousavi, R. Ghotaslou, A. Khorramdel et al., Antibacterial and antifungal impacts of combined silver, zinc oxide, and chitosan nanoparticles within tissue conditioners of complete dentures in vitro. Ir. J. Med. Sci. 189, 1343–1350 (2020). https://doi.org/10.1007/S11845-020-02243-1

    Article  CAS  PubMed  Google Scholar 

  61. J. Xiong, L. Shen, Q. Jiang, A. Kishen, Effect of crosslinked chitosan nanoparticles on the bonding quality of fiber posts in root canals. J. Adhes. Dent. 22, 321–330 (2020). https://doi.org/10.3290/J.JAD.A44555

    Article  PubMed  Google Scholar 

  62. J.S. Takanche, J.E. Kim, J.S. Kim et al., Chitosan-gold nanoparticles mediated gene delivery of c-myb facilitates osseointegration of dental implants in ovariectomized rat. Artif. Cells Nanomed. Biotechnol. 46, S807–S817 (2018). https://doi.org/10.1080/21691401.2018.1513940

    Article  CAS  PubMed  Google Scholar 

  63. L. Qi, Z. Xu, In vivo antitumor activity of chitosan nanoparticles. Bioorg. Med. Chem. Lett. 16, 4243–4245 (2006). https://doi.org/10.1016/j.bmcl.2006.05.078

    Article  CAS  PubMed  Google Scholar 

  64. Y. Hu, Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model. Int. J. Nanomedicine 6, 3351–3359 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  65. M. Elgadir, S. Uddin, S. Ferdous et al., Science direct impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review. J. Food Drug Anal. 1–11 (2014). https://doi.org/10.1016/j.jfda.2014.10.008

  66. M.A. Malinowska, K. Billet, S. Drouet, T. Munsch, M. Unlubayir, D. Tungmunnithum, N. Giglioli-Guivarc’h, C. Hano, A. Lanoue, Grape cane extracts as multifunctional rejuvenating cosmetic ingredient: evaluation of sirtuin activity, tyrosinase inhibition and bioavailability potential. Mol. 25, 2203 (2020). https://doi.org/10.3390/molecules25092203

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Magdalena Anna Malinowska or Agnieszka Szopa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jafernik, K. et al. (2023). Chitosan Nanoparticles: A Potential Biomedical Device. In: Swain, S.K., Biswal, A. (eds) Chitosan Nanocomposites. Biological and Medical Physics, Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-9646-7_6

Download citation

Publish with us

Policies and ethics