Skip to main content

The Nervous System

  • Chapter
  • First Online:
In Utero Pediatrics
  • 207 Accesses

Abstract

The fetal period is a critical time window for nervous system development. Major developmental events of brain structure and function are completed during this period under the regulation of genetic factors and impact of in utero environmental factors. Neurological structural diseases (e.g., encephalocele and hydrocephalus) and neurodevelopmental disorders (e.g., mental retardation and autism spectrum disorders) may occur if any disturbance occurs during this period. Early in utero screening, prevention, and intervention for high-risk factors during periconception may improve the disease prognosis to a greater extent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van Ooyen A. Using theoretical models to analyse neural development. Nat Rev Neurosci. 2011;12(6):311–26.

    Article  PubMed  Google Scholar 

  2. Sousa AMM, Meyer KA, Santpere G, Gulden FO, Sestan N. Evolution of the human nervous system function, structure, and development. Cell. 2017;170(2):226–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Greene ND, Copp AJ. Neural tube defects. Annu Rev Neurosci. 2014;37:221–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thapar A, Cooper M, Rutter M. Neurodevelopmental disorders. Lancet Psychiatry. 2017;4(4):339–46.

    Article  PubMed  Google Scholar 

  5. Ismail FY, Shapiro BK. What are neurodevelopmental disorders? Curr Opin Neurol. 2019;32(4):611–6.

    Article  PubMed  Google Scholar 

  6. Georgieff MK, Tran PV, Carlson ES. Atypical fetal development: fetal alcohol syndrome, nutritional deprivation, teratogens, and risk for neurodevelopmental disorders and psychopathology. Dev Psychopathol. 2018;30(3):1063–86.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Parenti I, Rabaneda LG, Schoen H, Novarino G. Neurodevelopmental disorders: from genetics to functional pathways. Trends Neurosci. 2020;43(8):608–21.

    Article  CAS  PubMed  Google Scholar 

  8. Kolla NJ, Bortolato M. The role of monoamine oxidase a in the neurobiology of aggressive, antisocial, and violent behavior: a tale of mice and men. Prog Neurobiol. 2020;194:101875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Doi M, Usui N, Shimada S. Prenatal environment and neurodevelopmental disorders. Front Endocrinol. 2022;13:860110.

    Article  Google Scholar 

  10. Nogueira Avelar ESR, Yu Y, Liew Z, Vested A, Sorensen HT, Li J. Associations of maternal diabetes during pregnancy with psychiatric disorders in offspring during the first 4 decades of life in a population-based Danish birth cohort. JAMA Netw Open. 2021;4(10):e2128005.

    Article  Google Scholar 

  11. He H, Yu Y, Liew Z, et al. Association of maternal autoimmune diseases with risk of mental disorders in offspring in Denmark. JAMA Netw Open. 2022;5(4):e227503.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dabkowska S, Kucinska-Chahwan A, Beneturska A, et al. Prenatal diagnosis and clinical significance of cephalocele—a single institution experience and literature review. Prenat Diagn. 2020;40(5):612–7.

    Article  PubMed  Google Scholar 

  13. Ruano R, Daniels DJ, Ahn ES, et al. In utero restoration of hindbrain herniation in fetal myelomeningocele as part of prenatal regenerative therapy program at Mayo Clinic. Mayo Clin Proc. 2020;95(4):738–46.

    Article  CAS  PubMed  Google Scholar 

  14. Society for Maternal-Fetal M, Monteagudo A. Posterior encephalocele. Am J Obstet Gynecol. 2020;223(6):B9–B12.

    Article  Google Scholar 

  15. Martinelli P, Russo R, Agangi A, Paladini D. Prenatal ultrasound diagnosis of frontonasal dysplasia. Prenat Diagn. 2002;22(5):375–9.

    Article  PubMed  Google Scholar 

  16. Lu XL, Wang L, Chang SY, et al. Sonic hedgehog signaling affected by promoter hypermethylation induces aberrant Gli2 expression in spina bifida. Mol Neurobiol. 2016;53(8):5413–24.

    Article  CAS  PubMed  Google Scholar 

  17. Estroff JA, Scott MR, Benacerraf BR. Dandy-Walker variant: prenatal sonographic features and clinical outcome. Radiology. 1992;185(3):755–8.

    Article  CAS  PubMed  Google Scholar 

  18. Society for Maternal-Fetal M, Dandy-Walker MA. Malformation. Am J Obstet Gynecol. 2020;223(6):B38–41.

    Article  Google Scholar 

  19. Etchegaray A, Juarez-Penalva S, Petracchi F, Igarzabal L. Prenatal genetic considerations in congenital ventriculomegaly and hydrocephalus. Childs Nerv Syst. 2020;36(8):1645–60.

    Article  PubMed  Google Scholar 

  20. Walsh S, Donnan J, Morrissey A, et al. A systematic review of the risks factors associated with the onset and natural progression of hydrocephalus. Neurotoxicology. 2017;61:33–45.

    Article  PubMed  Google Scholar 

  21. Babcook CJ, Goldstein RB, Filly RA. Prenatally detected fetal myelomeningocele: is karyotype analysis warranted? Radiology. 1995;194(2):491–4.

    Article  CAS  PubMed  Google Scholar 

  22. Ben Miled S, Loeuillet L, Duong Van Huyen JP, et al. Severe and progressive neuronal loss in myelomeningocele begins before 16 weeks of pregnancy. Am J Obstet Gynecol. 2020;223(2):256.e1–9.

    Article  PubMed  Google Scholar 

  23. Copp AJ, Adzick NS, Chitty LS, Fletcher JM, Holmbeck GN, Shaw GM. Spina bifida. Nat Rev Dis Primers. 2015;1:15007.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cragan JD, Roberts HE, Edmonds LD, et al. Surveillance for anencephaly and spina bifida and the impact of prenatal diagnosis--United States, 1985-1994. MMWR CDC Surveill Summ. 1995;44(4):1–13.

    CAS  PubMed  Google Scholar 

  25. Grivell RM, Andersen C, Dodd JM. Prenatal versus postnatal repair procedures for spina bifida for improving infant and maternal outcomes. Cochrane Database Syst Rev. 2014;10:CD008825.

    Google Scholar 

  26. Heuer GG, Moldenhauer JS, Scott AN. Prenatal surgery for myelomeningocele: review of the literature and future directions. Childs Nerv Syst. 2017;33(7):1149–55.

    Article  PubMed  Google Scholar 

  27. (CDC) CfDCaP. CDC grand rounds: additional opportunities to prevent neural tube defects with folic acid fortification. MMWR Morb Mortal Wkly Rep. 2010;59(31):980–4.

    Google Scholar 

  28. Czeizel AE, Dudás I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med. 1992;327(26):1832–5.

    Article  CAS  PubMed  Google Scholar 

  29. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. MRC Vitamin Study Research Group. Lancet. 1991;338(8760):131–7.

    Google Scholar 

  30. Oakley GP. The scientific basis for eliminating folic acid-preventable spina bifida: a modern miracle from epidemiology. Ann Epidemiol. 2009;19(4):226–30.

    Article  PubMed  Google Scholar 

  31. Williams J, Mai CT, Mulinare J, et al. Updated estimates of neural tube defects prevented by mandatory folic acid fortification - United States, 1995-2011. MMWR Morb Mortal Wkly Rep. 2015;64(1):1–5.

    PubMed  PubMed Central  Google Scholar 

  32. Bull MJ. Down syndrome. N Engl J Med. 2020;382(24):2344–52.

    Article  PubMed  Google Scholar 

  33. Schulz LC. The Dutch hunger winter and the developmental origins of health and disease. Proc Natl Acad Sci U S A. 2010;107(39):16757–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Hum Dev. 2006;82(8):485–91.

    Article  PubMed  Google Scholar 

  35. Stein Z, Susser M, Saenger G, Marolla F. Nutrition and mental performance. Science (New York, NY). 1972;178(4062):708–13.

    Article  CAS  Google Scholar 

  36. de Rooij SR, Wouters H, Yonker JE, Painter RC, Roseboom TJ. Prenatal undernutrition and cognitive function in late adulthood. Proc Natl Acad Sci U S A. 2010;107(39):16881–6.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mina TH, Lahti M, Drake AJ, et al. Prenatal exposure to maternal very severe obesity is associated with impaired neurodevelopment and executive functioning in children. Pediatr Res. 2017;82(1):47–54.

    Article  PubMed  Google Scholar 

  38. Rodriguez A, Miettunen J, Henriksen TB, et al. Maternal adiposity prior to pregnancy is associated with ADHD symptoms in offspring: evidence from three prospective pregnancy cohorts. Int J Obes. 2008;32(3):550–7.

    Article  CAS  Google Scholar 

  39. Reynolds LC, Inder TE, Neil JJ, Pineda RG, Rogers CE. Maternal obesity and increased risk for autism and developmental delay among very preterm infants. J Perinatol. 2014;34(9):688–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li M, Fallin MD, Riley A, et al. The Association of Maternal Obesity and Diabetes with Autism and other developmental disabilities. Pediatrics. 2016;137(2):e20152206.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schaefer-Graf UM, Buchanan TA, Xiang A, Songster G, Montoro M, Kjos SL. Patterns of congenital anomalies and relationship to initial maternal fasting glucose levels in pregnancies complicated by type 2 and gestational diabetes. Am J Obstet Gynecol. 2000;182(2):313–20.

    Article  CAS  PubMed  Google Scholar 

  42. Loeken MR. Current perspectives on the causes of neural tube defects resulting from diabetic pregnancy. Am J Med Genet C Semin Med Genet. 2005;135C(1):77–87.

    Article  PubMed  Google Scholar 

  43. Girchenko P, Lahti-Pulkkinen M, Heinonen K, et al. Persistently high levels of maternal antenatal inflammation are associated with and mediate the effect of prenatal environmental adversities on neurodevelopmental delay in the offspring. Biol Psychiatry. 2020;87(10):898–907.

    Article  CAS  PubMed  Google Scholar 

  44. Maynard TM, Sikich L, Lieberman JA, LaMantia AS. Neural development, cell-cell signaling, and the “two-hit” hypothesis of schizophrenia. Schizophr Bull. 2001;27(3):457–76.

    Article  CAS  PubMed  Google Scholar 

  45. Atladóttir HO, Thorsen P, Østergaard L, et al. Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord. 2010;40(12):1423–30.

    Article  PubMed  Google Scholar 

  46. Torrey EF, Rawlings R, Waldman IN. Schizophrenic births and viral diseases in two states. Schizophr Res. 1988;1(1):73–7.

    Article  CAS  PubMed  Google Scholar 

  47. Brown AS, Cohen P, Harkavy-Friedman J, et al. A.E. Bennett research award. Prenatal rubella, premorbid abnormalities, and adult schizophrenia. Biol Psychiatry. 2001;49(6):473–86.

    Article  CAS  PubMed  Google Scholar 

  48. Suvisaari J, Haukka J, Tanskanen A, Hovi T, Lönnqvist J. Association between prenatal exposure to poliovirus infection and adult schizophrenia. Am J Psychiatry. 1999;156(7):1100–2.

    Article  CAS  PubMed  Google Scholar 

  49. Li D-K, Raebel MA, Cheetham TC, et al. Genital herpes and its treatment in relation to preterm delivery. Am J Epidemiol. 2014;180(11):1109–17.

    Article  PubMed  Google Scholar 

  50. Lee YH, Cherkerzian S, Seidman LJ, et al. Maternal bacterial infection during pregnancy and offspring risk of psychotic disorders: variation by severity of infection and offspring sex. Am J Psychiatry. 2020;177(1):66–75.

    Article  PubMed  Google Scholar 

  51. Kinney DK, Munir KM, Crowley DJ, Miller AM. Prenatal stress and risk for autism. Neurosci Biobehav Rev. 2008;32(8):1519–32.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fineberg AM, Ellman LM, Schaefer CA, et al. Fetal exposure to maternal stress and risk for schizophrenia spectrum disorders among offspring: differential influences of fetal sex. Psychiatry Res. 2016;236:91–7.

    Article  PubMed  Google Scholar 

  53. Grizenko N, Fortier M-E, Zadorozny C, et al. Maternal stress during pregnancy, ADHD symptomatology in children and genotype: gene-environment interaction. J Can Acad Child Adolesc Psychiatry. 2012;21(1):9–15.

    PubMed  PubMed Central  Google Scholar 

  54. O’Connor TG, Heron J, Golding J, Glover V. Maternal antenatal anxiety and behavioural/emotional problems in children: a test of a programming hypothesis. J Child Psychol Psychiatry. 2003;44(7):1025–36.

    Article  PubMed  Google Scholar 

  55. Qiu A, Shen M, Buss C, et al. Effects of antenatal maternal depressive symptoms and socio-economic status on neonatal brain development are modulated by genetic risk. Cereb Cortex. 2017;27(5):3080–92.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Phua DY, Kee MKZL, Koh DXP, et al. Positive maternal mental health during pregnancy associated with specific forms of adaptive development in early childhood: evidence from a longitudinal study. Dev Psychopathol. 2017;29(5):1573–87.

    Article  PubMed  Google Scholar 

  57. Laplante DP, Brunet A, Schmitz N, Ciampi A, King S. Project ice storm: prenatal maternal stress affects cognitive and linguistic functioning in 5 1/2-year-old children. J Am Acad Child Adolesc Psychiatry. 2008;47(9):1063–72.

    Article  PubMed  Google Scholar 

  58. Li F, Wu SS, Berseth CL, et al. Improved neurodevelopmental outcomes associated with bovine milk fat globule membrane and lactoferrin in infant formula: a randomized, controlled trial. J Pediatr. 2019;215:24–31.e8.

    Article  CAS  PubMed  Google Scholar 

  59. Levine SZ, Kodesh A, Viktorin A, et al. Association of maternal use of folic acid and multivitamin supplements in the periods before and during pregnancy with the risk of autism spectrum disorder in offspring. JAMA Psychiatry. 2018;75(2):176–84.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Adzick NS, Thom EA, Spong CY, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364(11):993–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sanz Cortes M, Chmait RH, Lapa DA, et al. Experience of 300 cases of prenatal fetoscopic open spina bifida repair: report of the International Fetoscopic Neural Tube Defect Repair Consortium. Am J Obstet Gynecol. 2021;225(6):678.e1–11.

    Article  PubMed  Google Scholar 

  62. Wataganara T, Seshadri S, Leung TY, et al. Establishing prenatal surgery for myelomeningocele in Asia: the Singapore consensus. Fetal Diagn Ther. 2017;41(3):161–78.

    Article  PubMed  Google Scholar 

  63. Kahle KT, Kulkarni AV, Limbrick DD, Jr., Warf BC. Hydrocephalus in children. Lancet. 2016;387(10020):788–99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Li or Jie Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, H., Xu, MY., Li, F., Zhao, Y., Wang, JJ., Ma, J. (2023). The Nervous System. In: Sun, K. (eds) In Utero Pediatrics. Springer, Singapore. https://doi.org/10.1007/978-981-19-9538-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9538-5_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9537-8

  • Online ISBN: 978-981-19-9538-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics