Skip to main content

Efficient Quantum Circuit for Karatsuba Multiplier

  • Chapter
  • First Online:
Quantum Computing: A Shift from Bits to Qubits

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1085))

  • 1072 Accesses

Abstract

The fundamental element of quantum computing is the quantum circuit. An efficient quantum circuit saves quantum hardware resources by reducing the number of gates without increasing the number of qubits. Quantum circuits with many qubits are very difficult to realize. Thus, the number of qubits is an important parameter in a quantum circuit design. Using reversible logic in quantum circuits has many advantages such as diminishing power consumption, reducing heat propagation and decreasing quantum cost, ancilla inputs, and garbage outputs that lead to increased performance of quantum computers. Quantum circuits for arithmetic operations such as addition, subtraction, and multiplication are required in the implementation of quantum circuits for many quantum algorithms in this area. In this article two novel designs for GF(2n) multiplier using Karatsuba algorithm have been proposed that have been proved to have an improvement in qubits, garbage outputs, and ancilla inputs when it comes to comparison with recent research that have been done concerning this field. Bennett’s garbage removal strategy with the SWAP gate is used to remove garbage output from existing works in order to establish a fair comparison to existing work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Munoz-coreas, H. thapliyal, Quantum circuit design of a t-count optimized integer multiplier. IEEE Trans. Comput. 68 (5), (2020)

    Google Scholar 

  2. S. Kotiyal, H. Thapliyal, N. Ranganathan, Circuit for reversible quantum multiplier based on binary tree optimizing ancilla and garbage bits, in 2014 27th International conference on VLSI design and 2014 13th International conference on embedded systems, (2014), pp. 545–550

    Google Scholar 

  3. H. M. H. Babu, Cost-efficient design of a quantum multiplier—accumulator unit. Quantum Inf. Process. 16(1), (2016), Art. No. 30

    Google Scholar 

  4. S. Dutta, Y. Tavva, D. Bhattacharjee, A. Chattopadhyay, Efficient quantum circuits for square-root and inverse square-root, in 2020 33rd International conference on vlsi design and 2020 19th International conference on embedded systems (vlsid), (2020), pp. 55–60. https://doi.org/10.1109/vlsid49098.2020.00027

  5. P. N. Singh, S. Aarthi, Quantum circuits—an application in qiskit-python, in 2021 third international conference on intelligent communication technologies and virtual mobile networks (icicv), (2021), pp. 661–667

    Google Scholar 

  6. L. Kowada, Reversible Karatsuba’s algorithm. Article in J. Univers. Comput. Sci, (2006)

    Google Scholar 

  7. A. Karatsuba, Y. Ofman, Multiplication of multidigit numbers on automata, in Soviet physics—doklady, vol. 7, issue no. 7 (1963), pp. 595–596

    Google Scholar 

  8. P. Webster, S. D. Bartlett, D. Poulin, Reducing the overhead for quantum computation when noise is biased. Phys. Rev. A. 92, (2015). Art. No. 062309. [online]. Available https://doi.org/10.1103/physreva.92.062309

  9. X. Zhou, D. W. Leung, I. L. Chuang, Methodology for quantum logic gate construction. Phys. Rev. A. 62, (2000). Art. No. 052316. [online]. Available https://doi.org/10.1103/physreva.62.052316

  10. I. Polian, A. G. Fowler, Design automation challenges for scalable quantum architectures, in 2015 52nd ACM/EDAC/IEEE design automation conference (DAC), (2015), pp. 1–6

    Google Scholar 

  11. L. Ruiz-Perez, J. C. Garcia-Escartin, Quantum arithmetic with the quantum fourier transform. Quantum. inf. Process. 16 (6), (2017). Art. No. 152. [online]. Available https://doi.org/10.1007/s11128-017-1603-1

  12. G. Florio, D. Picca, Quantum implementation of elementary arithmetic operations. eprint arxiv:quant-Ph/0403048, (2004).[online]. Available arxiv.org/abs/quant-ph/0403048

  13. S. Kepley, R. Steinwandt, Quantum circuits for F2n-multiplication with subquadratic gate count. Quantum. Inf. Process. 14(7), 2373–2386 (2015). https://doi.org/10.1007/s11128-015-0993-1

  14. K. Jang, S. Choi, H. Kwon, Z. Hu, H. Seo, Impact of optimized operations A · B, A · C for binary field inversion on quantum computers. ed. by I. You ( Springer Nature Switzerland AG, 2020), WISA 2020, LNCS 12583, pp. 154–166. https://doi.org/10.1007/978-3-030-65299-9_12

  15. M. Haghparast, M. Mohammadi, K. Navi, M. Eshghi, Optimized reversible multiplier circuit. J. Circuits Syst. Comput. 18, (02), 311–323 (2009). [Online]. Available https://doi.org/10.1142/S0218126609005083.

  16. E. P. A. Akbar, M. Haghparast, K. Navi, Novel design of a fast reversibleWallace signmultiplier circuit in nanotechnology. Microelectron. J. 42 (8), 973–981 (2011). [Online]. Available http://www.sciencedirect.com/science/article/pii/S0026269211001194

  17. Z.G. Wang, S.J. Wei, G.L. Long, A quantum circuit design of AES requiring fewer quantum qubits and gate operations. Front. Phys. 17, 41501 (2022). https://doi.org/10.1007/s11467-021-1141-2

    Article  Google Scholar 

  18. S. Immareddy, A. Sundaramoorthy, 2022. A survey paper on design and implementation of multipliers for digital system applications. Artif. Intell. Rev.1–29 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. James Selsiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Selsiya, M.J., Kalaiarasi, M., Rajaram, S., Venkatasubramani, V.R. (2023). Efficient Quantum Circuit for Karatsuba Multiplier. In: Pandey, R., Srivastava, N., Singh, N.K., Tyagi, K. (eds) Quantum Computing: A Shift from Bits to Qubits. Studies in Computational Intelligence, vol 1085. Springer, Singapore. https://doi.org/10.1007/978-981-19-9530-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9530-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9529-3

  • Online ISBN: 978-981-19-9530-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics