Skip to main content

Quantum Programming on Azure Quantum—An Open Source Tool for Quantum Developers

  • Chapter
  • First Online:
Quantum Computing: A Shift from Bits to Qubits

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1085))

Abstract

Quantum computing has become a new buzzword in recent years. Although quantum computing techniques have been available in the literature for the past 40 or more years, the desire for real-time implementation of such quantum computing techniques has become possible due to the ongoing superspeed development of quantum computers by multinational corporations. Albeit, only 40 qubits quantum computer has been developed to date. Still, the pathway of big corporations reveals that by the end of this decade, a full-fledged quantum computer will be available in the market for everyone. Quantum computing uses quantum key distribution for quantum communication. It is expected that quantum computing and quantum communication will completely change the workflow of many industries. Studies are also predicting that the market demand for the quantum computing industry will be in multi-trillion dollars as early as 2030. Besides, the perspective of researchers has been drastically changing due to the plethora of opportunities brought forth by quantum computing for data processing and data encryption tasks. The quantum computer is deep-rooted in uncertainty principle, and probability theories thereby prohibit the copying and replicating of quantum information. Consequently, the guarantee of unconditional security for transmitted data is ensured, otherwise impossible. Generally, transmitted data are hacked due to attackers’ generation of keys replica. We may note that despite quantum computing being in a nascent stage, it possesses the potential to change internet activities by speeding up many tasks. Many day-to-day activities of many industries like finance, healthcare, and security will unseal imperceptible abilities. Furthermore, many big corporations invest in developing quantum computers and open-source tools to enable the development of quantum programs running on quantum computers. Also, community-driven activities are accomplished to upgrade the skills of current software developers to make them ready with appropriate skills for the development of future quantum software, which will run on large bits quantum computers. In this direction, Microsoft Incorporation has not only developed a quantum development kit (QDK) but also provides cloud-based quantum computing as a service, namely Azure Quantum, for developing and testing new quantum programs for the community. The newly designed quantum programs can now be simulated locally or run on the real quantum computer through Azure Quantum. Consequently, this chapter introduces the what, when, and why’s of quantum computing. Also, this chapter presents all necessary tools (with detailed installation and execution steps) required by the quantum developer for the possible development of a quantum program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.A. Shaikh, R. Ali, Quantum computation for big information processing, in Blockchain, Big Data and Machine Learning (CRC Press, 2020), pp. 315–338

    Google Scholar 

  2. S.S. Biswas, Quantum computers: a review work. Adv. Comput. Sci. Technol. 10(5), 1471–1478 (2017)

    Google Scholar 

  3. B. Rawat, N. Mehra, A.S. Bist, M. Yusup, Y.P.A. Sanjaya, Quantum computing and AI: impacts and possibilities. ADI J. Recent Innov. 3(2), 202–207 (2022)

    Article  Google Scholar 

  4. M. Schuld, I. Sinayskiy, F. Petruccione, The quest for a quantum neural network. Quantum Inf. Process. 13(11), 2567–2586 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Li, M. Tian, G. Liu, C. Peng, L. Jiao, Quantum optimization and quantum learning: a survey. IEEE Access 8, 23568–23593 (2020)

    Article  Google Scholar 

  6. T. Hur, L. Kim, D.K. Park, Quantum convolutional neural network for classical data classification (2021), arXiv preprint arXiv:2108.00661

  7. W. Deng, H. Liu, J. Xu, H. Zhao, Y. Song, An improved quantum-inspired differential evolution algorithm for deep belief network. IEEE Trans. Instrum. Meas. 69(10), 7319–7327 (2020)

    Article  Google Scholar 

  8. F.S. Khan, N. Solmeyer, R. Balu, T.S. Humble, Quantum games: a review of the history, current state, and interpretation. Quantum Inf. Process. 17(11), 1–42 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Carrega, A. Crescente, D. Ferraro, M. Sassetti, Dissipative dynamics of an open quantum battery. New J. Phys. 22(8), 083085 (2020)

    Article  Google Scholar 

  10. S. Ghosh, T. Chanda, A. Sen, Enhancement in the performance of a quantum battery by ordered and disordered interactions. Phys. Rev. A 101(3), 032115 (2020)

    Article  MathSciNet  Google Scholar 

  11. S. Yarkoni, F. Neukart, E.M.G. Tagle, N. Magiera, B. Mehta, K. Hire, M. Hofmann, Quantum shuttle: traffic navigation with quantum computing, in Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures and Paradigms for Engineering Quantum Software (2020), pp. 22–30

    Google Scholar 

  12. M. Zinner, F. Dahlhausen, P. Boehme, J. Ehlers, L. Bieske, L. Fehring, Quantum computing’s potential for drug discovery: early stage industry dynamics. Drug Discov. Today 26(7), 1680–1688 (2021)

    Article  Google Scholar 

  13. M. Ruzycka-Ayoush, P. Kowalik, A. Kowalczyk, P. Bujak, A.M. Nowicka, M. Wojewodzka, I.P. Grudzinski, Quantum dots as targeted doxorubicin drug delivery nanosystems in human lung cancer cells. Cancer Nanotechnol. 12(1), 1–27 (2021)

    Google Scholar 

  14. Y. Cao, J. Romero, A. Aspuru-Guzik, Potential of quantum computing for drug discovery. IBM J. Res. Dev. 62(6), 6–1 (2018)

    Article  Google Scholar 

  15. A. Bouland, W. van Dam, H. Joorati, I. Kerenidis, A. Prakash, Prospects and challenges of quantum finance (2020), arXiv preprint arXiv:2011.06492

  16. P. Rebentrost, B. Gupt, T.R. Bromley, Quantum computational finance: Monte Carlo pricing of financial derivatives. Phys. Rev. A 98(2), 022321 (2018)

    Article  Google Scholar 

  17. A. Ganapathy, Quantum computing in high frequency trading and fraud detection. Eng. Int. 9(2), 61–72 (2021)

    Article  Google Scholar 

  18. J. Zhang, X. Qiu, X. Li, Z. Huang, M. Wu, Y. Dong, Support vector machine weather prediction technology based on the improved quantum optimization algorithm. Comput. Intell. Neurosci. (2021)

    Google Scholar 

  19. Y. Li, Y. Zhao, J. Fu, L. Xu, Reducing food loss and waste in a two-echelon food supply chain: a quantum game approach. J. Clean. Prod. 285, 125261 (2021)

    Article  Google Scholar 

  20. S. Yarkoni, A. Alekseyenko, M. Streif, D. Von Dollen, F. Neukart, T. Bäck, Multi-car paint shop optimization with quantum annealing, in 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). (IEEE, 2021), pp. 35–41

    Google Scholar 

  21. C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, New York, 1984), pp. 175–179

    Google Scholar 

  22. C.H. Bennett, Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Bruß, Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81(14), 3018–3021 (1998)

    Article  Google Scholar 

  24. C.H. Bennett, G. Brassard, N.D. Mermin, Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68(5), 557–559 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. A.K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. R. LaPierre, Shor algorithm, in Introduction to Quantum Computing (Springer, Cham, 2021), pp.177–192

    Google Scholar 

  27. N. Kilber, D. Kaestle, S. Wagner, Cybersecurity for quantum computing (2021), arXiv preprint arXiv:2110.14701

  28. L. Zhang, A. Miranskyy, W. Rjaibi, G. Stager, M. Gray, J. Peck, Making existing software quantum safe: lessons learned (2021), arXiv preprint arXiv:2110.08661

  29. L. Ankur, Karambir, Using quantum key distribution and ECC for secure inter-device authentication and communication in IoT infrastructure, in Proceedings of 3rd International Conference on Internet of Things and Connected Technologies (ICIoTCT) (2018), http://dx.doi.org/10.2139/ssrn.3166511

  30. K. Prateek, F. Altaf, R. Amin, S. Maity, A privacy preserving authentication protocol using quantum computing for V2I authentication in vehicular Ad Hoc networks. Secur. Commun. Netw. (2022)

    Google Scholar 

  31. Z. Chen, K. Zhou, Q. Liao, Quantum identity authentication scheme of vehicular Ad-Hoc network. Int. J. Theor. Phys. 58, 40–57 (2019). https://doi.org/10.1007/s10773-018-3908-y

    Article  MATH  Google Scholar 

  32. G. Sharma, S. Kalra, Identity based secure authentication scheme based on quantum key distribution for cloud computing, in Peer-to-Peer Networking Application (2018), pp. 220–234. https://doi.org/10.1007/s12083-016-0528-2

  33. G. Murali, R.S. Prasad, Secured cloud authentication using quantum cryptography, in 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (Chennai, 2017), pp. 3753–3756. https://doi.org/10.1109/ICECDS.2017.8390166

  34. Y. Dong, S. Xiao, H. Ma, L. Chen, Research on quantum authentication methods for the secure access control among three elements of cloud computing. Int. J. Theor. Phys. https://doi.org/10.1007/s10773-016-3132-6

  35. K. Prateek, S. Maity, Post-quantum blockchain-enabled services in scalable smart cities, in Quantum Blockchain, An Emerging Cryptographic Paradigm (2022), p. 263

    Google Scholar 

  36. J. Ahn, J. Chung, T. Kim, B. Ahn, J. Choi, An overview of quantum security for distributed energy resources, in 2021 IEEE 12th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). (IEEE, 2021), pp. 1–7

    Google Scholar 

  37. L.P. Raghav, R.S. Kumar, D.K. Raju, A.R. Singh, Optimal energy management of microgrids using quantum teaching learning based algorithm. IEEE Trans. Smart Grid 12(6), 4834–4842 (2021)

    Article  Google Scholar 

  38. Z. Wang, Z. Guo, G. Mogos, Z. Gao, Quantum key distribution by drone. J. Phys.: Conf. Ser. 2095(1), 012080 (IOP Publishing, 2021)

    Google Scholar 

  39. M.H. Adnan, Z. Ahmad Zukarnain, N.Z. Harun, Quantum key distribution for 5g networks: a review. State Art Future Direct. Future Internet 14(3), 73 (2022)

    Google Scholar 

  40. J. Hooyberghs, Azure quantum, in Introducing Microsoft Quantum Computing for Developers (Apress, Berkeley, 2022), pp. 307–339

    Google Scholar 

  41. Download Docker image, https://github.com/microsoft/Quantum/tree/master/.devcontainer

  42. Q\(^\sharp \) user guide, https://docs.microsoft.com/en-us/azure/quantum/install-overview-qdk

  43. Ways to run a Q\(^\sharp \) program, https://docs.microsoft.com/en-us/azure/quantum/user-guide/host-programs?tabs=tabid-python

  44. Download Miniconda, https://docs.conda.io/en/latest/miniconda.html

  45. Download Anaconda, https://docs.anaconda.com/anaconda/install/windows/

  46. Azure Quantum Workspace, https://azure.microsoft.com/en-in/services/quantum/

  47. Azure Portal, https://azure.microsoft.com/en-in/features/azure-portal/

  48. M. Mariia, Quantum software development using the QDK (2021), https://devblogs.microsoft.com/qsharp/quantum-software-development-using-the-qdk/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Prateek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prateek, K., Maity, S. (2023). Quantum Programming on Azure Quantum—An Open Source Tool for Quantum Developers. In: Pandey, R., Srivastava, N., Singh, N.K., Tyagi, K. (eds) Quantum Computing: A Shift from Bits to Qubits. Studies in Computational Intelligence, vol 1085. Springer, Singapore. https://doi.org/10.1007/978-981-19-9530-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9530-9_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9529-3

  • Online ISBN: 978-981-19-9530-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics