Skip to main content

Disposable Electrochemical Nanobiosensors for Biomolecular Analysis

  • Reference work entry
  • First Online:
Handbook of Nanobioelectrochemistry
  • 285 Accesses

Abstract

Biosensors are modern analytical tools capable of monitoring diseases, drugs, proteins, environmental pollutants, and bioterrorism agents. They are alternative to the conventional analytical techniques due to the fact that they have practical and miniaturized bodies as well as they have target-specific characteristics. The integration of biosensor technologies into electrochemical analysis methods makes the bioanalytical system more reliable, robust, sensitive, and selective platform that can perform quantitative analysis. The use of nanomaterials and their nanocomposites enhances robustness, sensitivity, and selectivity features of these analytical tools. Herein, nanomaterials-based disposable electrochemical biosensor applications that are frequently used in recent years are presented. Due to distinctive properties of this group of biosensors, high-performance point-of-care diagnostics developed by using them are expected to have great global market potential in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadi A, Khoshfetrat SM, Kabiri S, Fotouhi L, Dorraji PS, Omidfar K (2021) Impedimetric paper-based enzymatic biosensor using electrospun cellulose acetate nanofiber and reduced graphene oxide for detection of glucose from whole blood. IEEE Sensor J 21:9210–9217

    Article  CAS  Google Scholar 

  • Ahmadi SF, Hojjatoleslamy M, Kiani H, Molavi H (2022) Monitoring of aflatoxin M1 in milk using a novel electrochemical aptasensor based on reduced graphene oxide and gold nanoparticles. Food Chem 73:131321

    Article  Google Scholar 

  • Akbarnia A, Zarea HR, Moshtaghioun SM, Benvidi A (2019) Highly selective sensing and measurement of microRNA-541 based on its sequence-specific digestion by the restriction enzyme Hinf1. Colloid Surf B 182:110360

    Article  CAS  Google Scholar 

  • Aoki K, Okamoto T, Kaneko H, Nozaki K, Negishi A (1989) Applicability of graphite reinforcement carbon used as the lead of a mechanical pencil to voltammetric electrodes. J Electroanal Chem Int Electrochem 263:323–331

    Article  CAS  Google Scholar 

  • Arora A, Oswal P, Datta A, Kumar A (2022) Complexes of metals with organotellurium compounds and nanosized metal tellurides for catalysis, electrocatalysis and photocatalysis. Coord Chem Rev 459:214406

    Article  CAS  Google Scholar 

  • Arshad F, Nabi F, Iqbal S, Khan RH (2022) Applications of graphene-based electrochemical and optical biosensors in early detection of cancer biomarkers. Colloid Surf B 212:112356

    Article  CAS  Google Scholar 

  • Assmann TS, Recamonde-Mendoza M, Puñales M, Tschiedel B, Canani LH, Crispim D (2018) MicroRNA expression profile in plasma from type 1 diabetic patients: case-control study and bioinformatic analysis. Diabetes Res Clin Pract 141:35–46

    Article  CAS  PubMed  Google Scholar 

  • Batchelor-McAuley C, Katelhön E, Barnes EO, Compton RG, Laborda E, Molina A (2015) Recent advances in voltammetry. Chem Open 4:224–260

    CAS  Google Scholar 

  • Bauer M, Eickhoff JC, Gould MN, Mundhenke C, Maass N, Friedl A (2008) Neutrophil gelatinase-associated lipocalin (NGAL) is a predictor of poor prognosis in human primary breast cancer. Breast Cancer Res Treat 108:389–397

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar I, Mahato K, Ealla KKRA, Asthana A, Chandra P (2018) Chitosan stabilized gold nanoparticle mediated self-assembled gliP nanobiosensor for diagnosis of Invasive Aspergillosis. Int J Biol Macromol 110:449–456

    Article  CAS  PubMed  Google Scholar 

  • Bolat G, Vural OA, Yaman YT, Abaci S (2021) Label-free impedimetric miRNA-192 genosensor platform using graphene oxide decorated peptide nanotubes composite. Microchem J 166:106218

    Article  CAS  Google Scholar 

  • Borisova B, Villalonga ML, Arévalo-Villena M, Boujakhrout A, Sánchez A, Parrado C, Pingarrón JM, Briones-Pérez A, Villalonga R (2017) Disposable electrochemical immunosensor for Brettanomyces bruxellensis based on nanogold-reduced graphene oxide hybrid nanomaterial. Anal Bioanal Chem 409:5667–5674

    Article  CAS  PubMed  Google Scholar 

  • Borisova B, Sánchez A, Soto-Rodríguez PED, Boujakhrout A, Arévalo-Villena M, Pingarrón JM, Briones-Pérez A, Parrado C, Villalonga R (2018) Disposable amperometric immunosensor for Saccharomyces cerevisiae based on carboxylated graphene oxide-modified electrodes. Anal Bioanal Chem 410:7901–7907

    Article  CAS  PubMed  Google Scholar 

  • Brosel-Oliu S, Abramova N, Uria N, Bratov A (2019) Impedimetric transducers based on interdigitated electrode arrays for bacterial detection. Anal Chim Acta 1088:1–19

    Article  CAS  PubMed  Google Scholar 

  • Burrs SL, Bhargava M, Sidhu R, Kiernan-Lewis J, Gomes C, Claussen JC, McLamore ES (2016) A paper based graphene-nanocauliflower hybrid composite for point of care biosensing. Biosens Bioelectron 85:479–487

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Fang C, Zeng R, Zhao X, Zhao F, Jiang Y, Chen Z (2017) A disposable paper-based microfluidic immunosensor based onreduced graphene oxide-tetraethylene pentamine/Au nanocompositedecorated carbon screen-printed electrodes. Sens Act B 252:44–54

    Article  CAS  Google Scholar 

  • Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81:7091–7095

    Article  CAS  PubMed  Google Scholar 

  • Chang Z, Zhu B, Liu J, Zhu X, Xu M, Travas-Sejdic J (2021) Electrochemical aptasensor for 17β-estradiol using disposable laser scribed graphene electrodes. Biosens Bioelectron 185:113247

    Article  CAS  PubMed  Google Scholar 

  • Chiticaru EA, Pilan L, Damian CM, Vasile E, Burns JS, Ioni M (2019) Influence of graphene oxide concentration when fabricating an electrochemical biosensor for DNA detection. Biosensors 9:113–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary M, Yadav P, Singh A, Kaur S, Ramirez-Vick J, Chandra P, Arora K, Singh SP (2016) CD 59 targeted ultrasensitive electrochemical immunosensor for fast and noninvasive diagnosis of oral cancer. Electroanalysis 28:2565–2574

    Article  CAS  Google Scholar 

  • Cincotto FH, Fava EL, Moraesa FC, Fatibello-Filho O, Fariaa RC (2019) A new disposable microfluidic electrochemical paper-based device for the simultaneous determination of clinical biomarkers. Talanta 195:62–68

    Article  CAS  PubMed  Google Scholar 

  • Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Article  CAS  PubMed  Google Scholar 

  • Congur G (2021) An up-to-date review about (bio)sensor systems developed for detection of glyphosate. Int J Env Anal Chem Ahead-of-print, 1–13

    Google Scholar 

  • Congur G, Eksin E, Erdem A (2015a) Impedimetric detection of microRNA at graphene oxide modified sensors. Electrochim Acta 172:20–27

    Article  CAS  Google Scholar 

  • Congur G, Erdem A, Mese F (2015b) Electrochemical investigation of the interaction between topotecan and DNA at disposable graphite electrodes. Bioelectrochemistry 102:21–28

    Article  CAS  PubMed  Google Scholar 

  • Congur G, Plucnara M, Erdem A, Fojta M (2015c) Detection of p53 gene by using genomagnetic assay combined with carbon nanotube modified disposable sensor technology. Electroanalysis 27:1579–1586

    Article  CAS  Google Scholar 

  • Congur G, Eksin E, Erdem A (2018) Impedimetric detection of miRNA-34a using graphene oxide modifiedchemically activated graphite electrodes. Sens Act A 279:493–500

    Article  CAS  Google Scholar 

  • Conti-Freitas LC, Foss-Freitas MC, Mamede R, Foss NT (2012) Interferon-gamma and ınterleukin-10 production by mononuclear cells from patients with advanced head and neck cancer. Clinics 67:587–590

    Article  PubMed  PubMed Central  Google Scholar 

  • Devarakonda S, Singh R, Bhardwaj J, Jang J (2017) Cost-effective and handmade paper-based ımmunosensing device for electrochemical detection of influenza virus sensors. Sensors 17:2597

    Article  PubMed  PubMed Central  Google Scholar 

  • Dowlatshahi S, Abdekhodaie MJ (2021) Electrochemical prostate-specific antigen biosensors based on electroconductive nanomaterials and polymers. Clin Chim Acta 516:111–135

    Article  CAS  PubMed  Google Scholar 

  • Down MP, Foster CW, Ji X, Banks CE (2016) Pencil drawn paper based supercapacitors. RSC Adv 6:81130–81141

    Article  CAS  Google Scholar 

  • Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81:5821–5826

    Article  CAS  PubMed  Google Scholar 

  • Dzulkurnain NA, Mokhtar M, Rashid JIA, Knight VF, Yunus VMZW, Ong KK, Kasim NAM, Noor SAM (2021) A review on ımpedimetric and voltammetric analysis based on polypyrrole conducting polymers for electrochemical sensing applications. Polymers 13:2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eksin E, Zor E, Erdem A, Bingol H (2017) Electrochemical monitoring of biointeraction by graphene-based material modified pencil graphite electrode. Biosens Bioelectron 92:207–214

    Article  CAS  PubMed  Google Scholar 

  • Eksin E, Bikkarolla SK, Erdem A, Papakonstantinou P (2018) Chitosan/nitrogen doped reduced graphene oxide modified biosensor for ımpedimetric detection of microRNA. Electroanalysis 30:551–560

    Article  CAS  Google Scholar 

  • Ensafi AA, Lesani S, Amini M, Rezaei B (2015) Electrochemical ds-DNA-based biosensor decorated with chitosan modified multiwall carbon nanotubes for phenazopyridine biodetection. J Taiwan Inst Chem Eng 54:165–169

    Article  CAS  Google Scholar 

  • Erdem A, Congur G (2014) Label-free voltammetric detection of MicroRNAs at multi-channel screen printed array of electrodes comparison to graphite sensors. Talanta 118:7–13

    Article  CAS  PubMed  Google Scholar 

  • Erdem A, Karadeniz H, Caliskan A (2009) Single-walled carbon nano-tubes modified graphite electrodes for electrochemical monitoring of nucleic acids and biomolecular interactions. Electroanalysis 21:464–471

    Article  CAS  Google Scholar 

  • Erdem A, Congur G, Eksin E (2013) Multi channel screen printed array of electrodes for enzyme-linked voltammetric detection of MicroRNAs. Sens Act B 188:1089–1095

    Article  CAS  Google Scholar 

  • Erdem A, Eksin E, Isin D, Polat D (2017) Graphene oxide modified chemically activated graphite electrodes for detection of microRNA. Electroanalysis 29:1350–1358

    Article  CAS  Google Scholar 

  • Famulok M, Hartig JS, Mayer G (2007) Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 107:3715–3743

    Article  CAS  PubMed  Google Scholar 

  • Faridbod F, Sanati AL (2019) Graphene quantum dots in electrochemical sensors/biosensors. Curr Anal Chem 15:103–123

    Article  CAS  Google Scholar 

  • Feng J, Ye Y, Xiao M, Wu G, Ke Y (2020) Synthetic routes of the reduced graphene oxide. Chem Paper 74:3767–3783

    Article  CAS  Google Scholar 

  • Feyzizarnagh H, Park BW, Sharma L, Patania MM, Yoon DY, Kim DS (2016) Amperometric mediatorless hydrogen peroxide sensor with horseradish peroxidase encapsulated in peptide nanotubes. Sens Bio-Sens Res 7:38–41

    Article  Google Scholar 

  • Flauzino JMR, Nguyen EM, Yang Q, Rosati G, Panacek D, Brito-Madurro AG, Madurro JM, Bakandritsos A, Otyepka MC, Merkoçi A (2022) Label-free and reagentless electrochemical genosensor based on graphene acid for meat adulteration detection. Biosens Bioelectron 195:113628

    Article  CAS  PubMed  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  PubMed  Google Scholar 

  • Ghosh T, Dutta M, Biswas K (2021) High-performance thermoelectrics based on metal selenides. In: Thermoelectric energy conversion theories and mechanisms, materials, devices, and applications, Woodhead Publishing series in electronic and optical materials, pp 217–246

    Google Scholar 

  • Goda ES, Gab-Allah MA, Singu BS, Yoon KR (2019) Halloysite nanotubes based electrochemical sensors. Microchem J 147:1083–1096

    Article  CAS  Google Scholar 

  • Gogola JL, Martins G, Gevaerd A, Blanes L, Cardoso J, Marchini FK, Banks CE, Bergamini MF, Marcolino-Junior LH (2021) Label-free aptasensor for p24-HIV protein detection based on graphene quantum dots as an electrochemical signal amplifier. Anal Chim Acta 1166:338548

    Article  CAS  PubMed  Google Scholar 

  • Goh GL, Tay MF, Lee JM, Ho JS, Sim LN, Yeong WY, Chong TH (2021) Potential of printed electrodes for electrochemical ımpedance spectroscopy (EIS): toward membrane fouling detection. Adv Electron Mater 7:2100043–2100064

    Article  CAS  Google Scholar 

  • Gonçalves AM, Pedro AQ, Santos FM, Martins LM, Maia CJ, Queiroz JA, Passarinha LA (2014) Trends in protein-based biosensor assemblies for drug screening and pharmaceutical kinetic studies. Molecules 19:12461–12485

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Bhardwaj SK, Sharma AL, Deep A (2019) A graphene electrode functionalized with aminoterephthalic acid for impedimetric immunosensing of Escherichia coli. Microchim Acta 186:800

    Article  CAS  Google Scholar 

  • Gutiérrez-Capitán M, Baldi A, Fernández-Sánchez C (2020) Electrochemical paper-based biosensor devices for rapid detection of biomarkers. Sensors 20:967

    Article  PubMed  PubMed Central  Google Scholar 

  • Han B, Shi X, Peng Q, Gao W (2012) Study on genetic variance of miR-541 in type 1 diabetes. ISRN Endocrinol 2012:630861

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanjani HRA, Zarei K (2021) DNA/Au-Pt bimetallic nanoparticles/graphene oxide-chitosan composites modified pencil graphite electrode used as an electrochemical biosensor for sub-picomolar detection of anti-HIV drug zidovudine. Microchem J 164:106005

    Article  Google Scholar 

  • Hatamluyi B, Es’haghi Z (2018) Quantitative biodetection of anticancer drug rituxan with dna biosensor modified pamam dendrimer/reduced graphene oxide nanocomposite. Electroanalysis 30:1659–1668

    Article  Google Scholar 

  • Hernández-Ibáñez N, García-Cruz L, Montiel V, Foster CW, Banks CE, Iniesta J (2016) Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures. Biosens Bioelectron 77:1168–1174

    Article  PubMed  Google Scholar 

  • Hu X, Gou KY, Kumar VS, Catanante G, Li Z, Zhu Z, Marty JL (2018) Disposable electrochemical aptasensor based on carbon nanotubes-V2O5-chitosan nanocomposite for detection of ciprofloxacin. Sens Act B 268:278–286

    Article  CAS  Google Scholar 

  • Huo PP, Zhao P, Wang Y, Liu B, Yin GC, Dong MD (2018) A roadmap for achieving sustainable energy conversion and storage: graphene-based composites used both as an electrocatalyst for oxygen reduction reactions and an electrode material for a supercapacitor. Energies 11:167–189

    Article  Google Scholar 

  • Hussain RA, Hussain I (2020) Metal telluride nanotubes: synthesis, and applications. Mat Chem Phys 256:123691

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Iliuk AB, Hu L, Tao WA (2011) Aptamer in bioanalytical applications. Anal Chem 83:4440–4452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida N, Saito K (1977) Pencil lead and manufacturing method of the same. US Patent No: 4017451

    Google Scholar 

  • Isin D, Eksin E, Erdem A (2017) Graphene oxide modified single-use electrodes and their application for voltammetric miRNA analysis. Mater Sci Eng C 75:1242–1249

    Article  CAS  Google Scholar 

  • Jamaluddin RZAR, Heng LY, Tan LL, Chong KF (2018) Electrochemical biosensor for nitrite based on polyacrylic-graphene composite film with covalently ımmobilized hemoglobin. Sensors 18:1343–1359

    Article  Google Scholar 

  • Jamaluddin RZAR, Tan LL, Chong KF, Heng LY (2020) An electrochemical DNA biosensor fabricated from graphene decorated with graphitic nanospheres. Nanotechnology 31:485501

    Article  CAS  Google Scholar 

  • Jin Z, Owour P, Lei S, Ge L (2015) Graphene, graphene quantum dots and their applications in optoelectronics. Curr Opin Colloid Inter Sci 20:439–453

    Article  CAS  Google Scholar 

  • Joshi DJ, Koduru JR, Malek NI, Hussain CM, Kailasa SK (2021) Surface modifications and analytical applications of graphene oxide. Trend Anal Chem 144:116448

    Article  CAS  Google Scholar 

  • Kamali P, Zandi M, Ghasemzadeh-Moghaddam H, Fani M (2022) Comparison between various biosensor methods for human Tlymphotropic virus1 (HTLV1) detection. Mol Biol Rep 49:1513–1517

    Article  CAS  PubMed  Google Scholar 

  • Kampeera J, Pasakon P, Karuwan C, Arunrut N, Sappat A, Sirithammajak S, Dechokiattawan N, Sumranwanich T, Chaivisuthangkura P, Ounjai P, Chankhamhaengdecha S, Wisitsoraat A, Tuantranont A, Kiatpathomchai W (2019) Point-of-care rapid detection of Vibrio parahaemolyticus in seafood using loop-mediated isothermal amplification and graphene-based screen-printed electrochemical sensor. Biosens Bioelectron 132:271–278

    Article  CAS  PubMed  Google Scholar 

  • Kanat E, Eksin E, Karacicek B, Erac Y, Erdem A (2018) Electrochemical detection of ınteraction between dacarbazine and nucleic acids in comparison to agarose gel electrophoresis. Electroanalysis 30:1566–1574

    Article  CAS  Google Scholar 

  • Karimi-Maleh H, Tahernejad-Javazmi F, Atar N, Yola ML, Gupta VK, Ensafi AA (2015) A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug. Ind Eng Chem Res 54:3634–3639

    Article  CAS  Google Scholar 

  • Karimi-Maleh H, Bananezhad A, Ganjali MR, Norouzi P, Sadrnia A (2018) Surface amplification of pencil graphite electrode with polypyrrole and reduced graphene oxide for fabrication of a guanine/adenine DNA based electrochemical biosensors for determination of didanosine anticancer drug. App Surf Sci 441:55–60

    Article  CAS  Google Scholar 

  • Karuppiah S, Mishra NC, Tsai WC, Liao WS, Chou CF (2021) Ultrasensitive and low-cost paper-based graphene oxide nanobiosensor for monitoring water-borne bacterial contamination. ACS Sens 6:3214–3223

    Article  CAS  PubMed  Google Scholar 

  • Katouzian I, Jafari SM (2019) Protein nanotubes as state-of-the-art nanocarriers: synthesis methods, simulation and applications. J Control Release 303:302–318

    Article  CAS  PubMed  Google Scholar 

  • Kelarakis A (2015) Graphene quantum dots: in the crossroad of graphene, quantum dots and carbogenic nanoparticles. Curr Opin Colloid Inter Sci 20:354–361

    Article  CAS  Google Scholar 

  • Khodadadi A, Faghih-Mirzaei A, Karimi-Maleh H, Abbaspourrad A, Agarwalf S, Kumar Gupta V (2019) A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: experimental and docking theoretical investigations. Sens Act B 284:568–574

    Article  CAS  Google Scholar 

  • Killard AJ (2017) Disposable sensors. Curr Opin Electrochem 3:57–62

    Article  CAS  Google Scholar 

  • Kim J, Campbell AS, BEF Á, Wang J (2019) Wearable biosensors for healthcare monitoring. Nat Biotech 37:389–406

    Article  CAS  Google Scholar 

  • Lakshmipriya T, Gopinath SCB (2019) An introduction to biosensors and biomolecules. In: Nanobiosensors Biomolecular Targeting. Elsevier, pp 1–21

    Google Scholar 

  • Lau WKO, Blute ML, Weaver AL, Torres VE, Zincke H (2000) Matched comparison of radical nephrectomy vs nephronsparing surgery in patients with unilateral renal cell carcinoma and a normal contralateral kidney. Mayo Clin Proc 75:1236–1242

    Article  CAS  PubMed  Google Scholar 

  • Lawal AT (2018) Progress in utilisation of graphene for electrochemical biosensors. Biosens Bioelectron 106:149–178

    Article  CAS  PubMed  Google Scholar 

  • Lee EK, Kim HJ, Lee KJ, Lee HJ, Lee JS, Kim DG, Hong SW, Yoon Y, Kim JS (2011) Inhibition of the proliferation and invasion of hepatocellular carcinoma cells by lipocalin 2 through blockade of JNK and PI3K/Akt signaling. Int J Oncol 38:325–333

    CAS  PubMed  Google Scholar 

  • Lee SH, Ban YJ, Oh CH, Park HK, Choi S (2016) A solvent-free microbial-activated air cathode battery paper platform made with pencil-traced graphite electrodes. Scientific Reports 6:28588

    Google Scholar 

  • Li Z, Wang L, Li Y, Feng Y, Feng W (2019) Carbon-based functional nanomaterials: preparation, properties and applications. Compos Sci Technol 179:10–40

    Article  CAS  Google Scholar 

  • Lim J, Ling W, Khan A, Saad B, Ghani SA (2012) Electro polymerized 4-vinyl pyridine on 2B pencil graphite as ionophore for cadmium (II). Talanta 88:477–483

    Article  Google Scholar 

  • Liu F, Li N, Long B, Fan Y, Liu C, Zhou Q, Murtaza I, Wang K, Li P (2014) Cardiac hypertrophy is negatively regulated by miR-541. Cell Death Dis 5:1171

    Article  Google Scholar 

  • Liu J, Zhu B, Dong H, Zhang Y, Xu M, Travas-Sejdic J, Chang Z (2022) A novel electrochemical insulin aptasensor: from glassy carbon electrodes to disposable, single-use laser-scribed graphene electrodes. Bioelectrochemistry 143:107995

    Article  CAS  PubMed  Google Scholar 

  • Loo SW, Pui TS (2020) Cytokine and cancer biomarkers detection: the dawn of electrochemical paper-based biosensor. Sensors 20:1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu YJ, Liu RY, Hu K, Wang Y (2016) MiR-541-3p reverses cancer progression by directly targeting TGIF2 in non-small cell lung cancer. Tumor Immunol 37:12685–12695

    CAS  Google Scholar 

  • Lu Q, Su T, Shang Z, Jin D, Shu Y, Xu Q, Hu X (2021) Flexible paper-based Ni-MOF composite/AuNPs/CNTs film electrode for HIV DNA detection. Biosens Bioelectron 184:113229

    Article  CAS  PubMed  Google Scholar 

  • Mahato K, Purohit B, Bhardwaj K, Jaiswal A, Chandra P (2019) Novel electrochemical biosensor for serotonin detection based on gold nanorattles decorated reduced graphene oxide in biological fluids and in vitro model. Biosens Bioelectron 142:111502

    Article  CAS  PubMed  Google Scholar 

  • Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed Engl 46:1318–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mašek J (1960) A simple microcoulometric arrangement for polarographic purposes using the three-electrode system. J Electroanal Chem 1:416–421

    Google Scholar 

  • Matassan ND, Rizwan M, Mohd-Naim NF, Tlili C, Ahmed MU (2019) Graphene nanoplatelets-based aptamer biochip for the detection of Lipocalin-2. IEEE Sensors J 19:9592–9599

    Article  CAS  Google Scholar 

  • Mehta J, Vinayak P, Tuteja SK, Chhabra VA, Bhardwaj N, Paul AK, Kim KH (2016) Deep A graphene modified screen printed immunosensor for highly sensitive detection of parathion. Biosens Bioelectron 83:339–346

    Article  CAS  PubMed  Google Scholar 

  • Min J, Kim Y, Lee S, Jang TW, Kim I, Song J (2019) The fourth industrial revolution and its impact on occupational health and safety, worker’s compensation and labor conditions. Saf Health Work 10:400–408

    Article  PubMed  PubMed Central  Google Scholar 

  • Mincu NB, Lazar V, Stan D, Mihailescu CM, Iosu R, Mateescu AL (2020) Screen-printed electrodes (SPE) for in vitro diagnostic purpose. Diagnostics 10:517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto T, Kashima H, Suzuki A, Kikuchi N, Konishi D, Seki N, Shiozawa T (2011) Laser-captured microdissection-microarray analysis of the genes involved in endometrial carcinogenesis: stepwise upregulation of lipocalin2 expression in normal and neoplastic endometria and its functional relevance. Hum Pathol 42:1265–1274

    Article  CAS  PubMed  Google Scholar 

  • Mohammad-Razdari A, Ghasemi-Varnamkhasti M, Izadi Z, Ensafi AA, Rostami S, Siadat M (2019a) An impedimetric aptasensor for ultrasensitive detection of Penicillin G based on the use of reduced graphene oxide and gold nanoparticles. Microchim Acta 186:372

    Article  Google Scholar 

  • Mohammad-Razdari A, Ghasemi-Varnamkhasti M, Izadi Z, Rostami S, Ensafi AA, Siadat M, Losson E (2019b) Detection of sulfadimethoxine in meat samples using a novel electrochemical biosensor as a rapid analysis method. J Food Comp Anal 82:103252

    Article  CAS  Google Scholar 

  • Mohanraj J, Durgalakshmi D, Rakkesh RA, Balakumar S, Rajendran S, Karimi-Maleh H (2020) Facile synthesis of paper based graphene electrodes for point of care devices: a double stranded DNA (dsDNA) biosensor. J Colloid Inter Sci 566:463–472

    Article  CAS  Google Scholar 

  • Moniaux N, Chakraborty S, Yalniz M, Gonzalez J, Shostrom VK, Standop J, Lele SM, Ouellette M, Pour PM, Sasson AR, Brand RE, Hollingsworth MA, Jain M, Batra SK (2008) Early diagnosis of pancreatic cancer: neutrophil gelatinase-associated lipocalin as a marker of pancreatic intraepithelial neoplasia. Br J Cancer 98:1540–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moraskie M, Roshid HO, O’Connor G, Dikici E, Zingg JM, Deo S, Daunert S (2021) Microbial whole-cell biosensors: current applications, challenges, and future perspectives. Biosens Bioelectron 191:113359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moshiri F, Salvi A, Gramantieri L, Sangiovanni A, Guerriero P, De Petro G, Bassi C, Lupini L, Sattari A, Cheung D (2018) Circulating miR-106b-3p, miR-101-3p and miR-1246 as diagnostic biomarkers of hepatocellular carcinoma. Oncotarget 9:15350

    Article  PubMed  PubMed Central  Google Scholar 

  • Mujica ML, Gallaya PA, Perrachionea F, Montemerlo AE, Tamborelli LA, Vaschetti VM, Reartes RM, Bolloc S, Rodríguez MC, Dalmasso PR, Rubianes MD, Rivas GA (2020) New trends in the development of electrochemical biosensors for thequantification of microRNAs. J Pharm Biomed Anal 189:113478

    Article  CAS  PubMed  Google Scholar 

  • Mustafa RR, Sukor R, Eissa S, Shahrom AN, Saari N, Nor SMM (2021) Sensitive detection of mitragynine from Mitragyna speciosa Korth using an electrochemical immunosensor based on multiwalled carbon nanotubes/chitosan- modified carbon electrode. Sens Act B 345:130356

    Article  CAS  Google Scholar 

  • Narwal V, Pundir CS (2019) Development of glycerol biosensor based on co-immobilization of enzyme nanoparticles onto graphene oxide nanoparticles decorated pencil graphite electrode. Int J Biol Macromol 127:57–65

    Article  CAS  PubMed  Google Scholar 

  • Nilghaz A, Guan L, Tan W, Shen W (2016) Advances of paper-based microfluidics for diagnostics – the original motivation and current status. ACS Sens 1:1382–1393

    Article  CAS  Google Scholar 

  • Nochit P, Subudom P, Teepoo S (2021) Multiwalled carbon nanotube (MWCNT) based electrochemical paper-based analytical device (ePAD) for the determination of catechol in wastewater. Anal Lett 54:2484–2497

    Article  CAS  Google Scholar 

  • Nohwala B, Chaudharya R, Pundir CS (2020) Amperometric L-lysine determination biosensor amplified with L-lysine oxidase nanoparticles and graphene oxide nanoparticles. Process Biochem 97:57–63

    Article  Google Scholar 

  • Nooranian S, Mohammadinejad A, Mohajeri T, Aleyaghoo G, Oskuee RK (2021) Biosensors based on aptamer-conjugated gold nanoparticles: a review. Biotechnol Appl Biochem 1–18

    Google Scholar 

  • Obayomi KS, Lau SY, Danquah M, Chiong T, Takeo M (2022) Advances in graphene oxide based nanobiocatalytic technology for wastewater treatment. Environ Nanotechnol Monit Manag 17:100647

    CAS  Google Scholar 

  • Pandey CM, Malhotra BD (2019) Biosensors: fundamentals and applications, 2nd edn. De Gruyter, Berlin/Boston

    Book  Google Scholar 

  • Panraksa Y, Siangproh W, Khampieng T, Chailapakul O, Apilux A (2018) Paper-based amperometric sensor for determination of acetylcholinesterase using screen-printed graphene electrode. Talanta 178:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Parate K, Pola CC, Rangnekar SV, Mendivelso-Perez DL, Smith EA, Hersam MC, Gomes CL, Claussen JC (2020a) Aerosol-jet-printed graphene electrochemical histamine sensors for food safety monitoring. 2D Mater 7:034002

    Article  CAS  Google Scholar 

  • Parate K, Rangnekar SV, Jing D, Mendivelso-Perez DL, Ding S, Secor EB, Smith EA, Hostetter JM, Hersam MC, Claussen JC (2020b) Aerosol-Jet-printed graphene immunosensor for label-free cytokine monitoring in serum. Appl Mater Interfaces 12:8592–8603

    Article  CAS  Google Scholar 

  • Pishko MV, Katanis I, Lindquist SE, Heller A, Degani Y (1990) Electrical communication between graphite electrodes and glucose oxidase/redox polymer complexes. Mol Cryst Liq Cryst 190:221–249

    CAS  Google Scholar 

  • Plekhanova Y, Tarasov S, Reshetilov A (2021) Use of PEDOT:PSS/graphene/nafion composite in biosensors based on acetic acid bacteria. Biosensors 11:332–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poletti F, Scidà A, Zanfrognini B, Kovtun A, Parkula V, Favaretto L, Melucci M, Palermo V, Treossi E, Zanardi C (2022) Graphene-paper-based electrodes on plastic and textile supports as new platforms for amperometric biosensing. Adv Funct Mater 32:2107941

    Article  CAS  Google Scholar 

  • Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R 43:61–102

    Article  Google Scholar 

  • Pothipor C, Bamrungsap S, Jakmune J, Ounnunka K (2022) A gold nanoparticle-dye/poly(3-aminobenzylamine)/two dimensional MoSe2/graphene oxide electrode towards label-free electrochemical biosensor for simultaneous dual-mode detection of cancer antigen 15-3 and microRNA-21. Colloid Surf B 210:112260

    Google Scholar 

  • Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39:4146–4157

    Article  CAS  PubMed  Google Scholar 

  • Rabti A, Mayorga-Martinez CC, Baptista-Pires L, Raouafi N, Merkoçi A (2016) Ferrocene-functionalized graphene electrode for biosensing applications. Anal Chim Acta 926:28–35

    Article  CAS  PubMed  Google Scholar 

  • Rong S, Zou L, Zhu Y, Zhang Z, Liu H, Zhang Y, Zhang H, Gao H, Guan H, Dong J, Guo Y, Liu F, Li X, Pan H, Chang D (2021) 2D/3D material amplification strategy for disposable label-free electrochemical immunosensor based on rGO-TEPA@Cu-MOFs@SiO2@AgNPs composites for NMP22 detection. Microchem J 168:106410

    Google Scholar 

  • Saadat S, Pandey G, Tharmavaram M, Braganz V, Rawtani D (2020) Nano-interfacial decoration of Halloysite nanotubes for the development of antimicrobial nanocomposites. Adv Colloid Int Sci 275:102063

    Article  CAS  Google Scholar 

  • Saif MJ, Asif HM, Naveed M (2018) Properties andmodificationmethods of halloysite nanotubes: a state-of-the- art review. Chil Chem Soc 63:4109–4125

    Article  CAS  Google Scholar 

  • Sawant SV, Patwardhan AW, Joshi JB, Dasgupta K (2022) Boron doped carbon nanotubes: synthesis, characterization and emerging applications. Chem Eng J 427:131616

    Article  CAS  Google Scholar 

  • Sengiz C, Congur G, Eksin E, Erdem A (2015) Multiwalled carbon nanotubes-chitosan modified single- use biosensors for electrochemical monitoring of drug- DNA interactions. Electroanalysis 27:1855–1863

    Article  CAS  Google Scholar 

  • Seo SE, Tabei F, Park SJ, Askarian B, Kima KH, Moallem G, Chong JW, Kwon OS (2019) Smartphone with optical, physical, and electrochemical nanobiosensors. J Ind Eng Chem 77:1–11

    Article  CAS  Google Scholar 

  • Sethi J, Bulck MV, Suhail A, Safarzadeh M, Perez-Castillo A, Pan G (2020) A label-free biosensor based on graphene and reduced graphene oxide dual-layer for electrochemical determination of beta-amyloid biomarkers. Microchim Acta 187:288

    Article  CAS  Google Scholar 

  • Sethi J, Suhail A, Safarzadeh M, Sattar A, Wei Y, Pan G (2021) NH2 linker for femtomolar label-free detection with reduced graphene oxide screen-printed electrodes. Carbon 179:514–522

    Google Scholar 

  • Settu K, Liu JT, Chen CJ, Tsai JZ (2017) Development of carbongraphene-based aptamer biosensor for EN2 protein detection. Anal Biochem 534:99–107

    Article  CAS  PubMed  Google Scholar 

  • Sha R, Badhulika S (2019) Few layered MoS2 grown on pencil graphite: a unique single-step approach to fabricate economical, binder-free electrode for supercapacitor applications. Nanotechnology 30:035402

    Google Scholar 

  • Sharifi M, Avadi MR, Attar F, Dashtestani F, Ghorchian H, Rezayat SM, Saboury AA, Falahati M (2019) Cancer diagnosis using nanomaterials based electrochemical nanobiosensors. Biosens Bioelectron 126:773–784

    Article  CAS  PubMed  Google Scholar 

  • Shoja Y, Kermanpur A, Karimzadeh F (2018) Diagnosis of EGFR exon21 L858R point mutation as lung cancer biomarker by electrochemical DNA biosensor based on reduced graphene oxide/functionalized ordered mesoporous carbon/Ni-oxytetracycline metallopolymer nanoparticles modified pencil graphite electrode. Biosens Bioelectron 113:108–115

    Article  CAS  PubMed  Google Scholar 

  • Silveira MC, Monteiro T, Almeida GM (2016) Biosensing with paper-based miniaturized printed electrodes–a modern trend. Biosensors 6:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Soares RRA, Hjort RG, Pola CC, Parate K, Reis EL, Soares NFF, McLamore ES, Claussen JC, Gomes CL (2020) Laser-induced graphene electrochemical immunosensors for rapid and label-free monitoring of salmonella enterica in chicken broth. ACS Sens 5:1900–1911

    Article  CAS  PubMed  Google Scholar 

  • Song KM, Cho M, Jo H, Min K, Jeon SH, Kim T, Han MS, Ku JK, Ban C (2011) Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal Biochem 415:175–181

    Article  CAS  PubMed  Google Scholar 

  • Srivastava AK, Dev A, Karmakar S (2018) Nanosensors and nanobiosensors in food and agriculture. Env Chem Lett 16:161–182

    Article  CAS  Google Scholar 

  • Stanković V, Đurđić S, Ognjanović M, Antić B, Kalcher K, Mutić J, Stanković DM (2020) Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor. J Electroanal Chem 860:113928

    Article  Google Scholar 

  • Sujaritvanichpong S, Aoki K (1989) Electrode reactions of 3,4-dihydroxyphenylacetic acid (DOPAC) at glassy carbon, graphite-reinforcement carbon, and carbon fiber electrodes. Electroanalysis 1:397–403

    Article  CAS  Google Scholar 

  • Taei M, Salavati H, Hasanpour F, Shafiei A (2015) Biosensor based on ds-DNA decorated Fe2O3/SnO2-chitosan modified multiwalled carbon nanotubes for biodetection of doxorubicin. IEEE Sensors J 16:1–1

    Google Scholar 

  • Teymourian H, Barfidokht A, Wang J (2020) Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem Soc Rev 49:7671–7709

    Article  CAS  PubMed  Google Scholar 

  • Thangamuthu M, Hsieh KY, Kumar PV, Chen GY (2019) Graphene- and graphene oxide-based nanocomposite platforms for electrochemical biosensing applications. Int J Mol Sci 20:2975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thapa K, Liu W, Wang R (2022) Nucleic acid-based electrochemical biosensor: recent advances in probe immobilization and signalamplification strategies. WIREs Nanomed Nanobiotechnol 14:1765

    Article  Google Scholar 

  • Torrinha A, Amorim CG, Montenegro MCBSM, Araújo AN (2018) Biosensing based on pencil graphite electrodes. Talanta 190:235–247

    Article  CAS  PubMed  Google Scholar 

  • Torul H, Yarali E, Eksin E, Ganguly A, Benson J, Tamer U, Papakonstantinou P, Erdem A (2021) Paper-based electrochemical biosensors for voltammetric detection of miRNA biomarkers using reduced graphene oxide or MOS2 nanosheets decorated with gold nanoparticle electrodes. Biosensors 11:236–252

    Google Scholar 

  • Tu D, He Y, Rong Y, Wang Y, Li G (2016) Disposable L-lactate biosensor based on a screen-printed carbon electrode enhanced by graphene. Meas Sci Technol 27:045108–2704514

    Article  Google Scholar 

  • Turner AFP (2013) Biosensors: sense and sensibility. Chem Soc Rev 42:3184–3196

    Article  CAS  PubMed  Google Scholar 

  • Tutunaru O, Mihailescu CM, Savin M, Tincu BC, Stoian MC, Muscalu GS, Firtat B, Dinulescu S, Craciun G, Moldovan CA, Ficai A, Ion AC (2021) Acetylcholinesterase entrapment onto carboxyl-modified single-walled carbon nanotubes and poly (3,4-ethylenedioxythiophene) nanocomposite, film electrosynthesis characterization, and sensor application for dichlorvos detection in apple juice. Microchem J 169:106573

    Article  CAS  Google Scholar 

  • Unal DN, Eksin E, Erdem A (2017) Carbon nanotubes modified graphite electrodes for monitoring of biointeraction between 6-thioguanine and DNA. Electroanalysis 29:2292–2299

    Article  CAS  Google Scholar 

  • Viau A, Karoui KE, Laouari D, Burtin M, Nguyen C, Mori K, Pillebout E, Berger T, Mak TW, Knebelmann B, Friedlander G, Barasch J, Terzi F (2010) Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. J Clin Invest 120:4065–4076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viet NX, Hoan NX, Takamura Y (2019) Development of highly sensitive electrochemical immunosensor based on single-walled carbon nanotube modified screen-printed carbon electrode. Mater Chem Phys 227:123–129

    Article  Google Scholar 

  • Vukojević V, Djurdjića S, Ognjanović M, Fabián M, Samphaod A, Kalchere K, Stanković DM (2018) Enzymatic glucose biosensor based on manganese dioxide nanoparticles decorated on graphene nanoribbons. J Electroanal Chem 823:610–616

    Article  Google Scholar 

  • Vural T, Yaman YT, Ozturk S, Abaci S, Denkbas EB (2018) Electrochemical immunoassay for detection of prostate specific antigen based on peptide nanotube-gold nanoparticle-polyaniline immobilized pencil graphite electrode. J Colloid Inter Sci 510:318–326

    Article  CAS  Google Scholar 

  • Wang L (2017) Screening and biosensor-based approaches for lung cancer detection. Sensors 17:2420

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Kawde AN, Sahlin E (2000) Renewable pencil electrodes for highly sensitive stripping potentiometric measurements of DNA and RNA. Analyst 125:5–7

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lu X, Chen J (2014) Development of biosensor technologies for analysis of environmental contaminants. Trend Env Anal Chem 2:25–32

    Article  CAS  Google Scholar 

  • Wang Y, Zhang J, Gao H, Sun Y, Wang L (2022) Lipid nanotubes: formation and applications. Colloid Surf B 212:112362

    Article  CAS  Google Scholar 

  • Wei B, Mao K, Liu N, Zhang M, Yang Z (2018) Graphene nanocomposites modified electrochemical aptamer sensor for rapid and highly sensitive detection of prostate specific antigen. Biosens Bioelectron 121:41–46

    Article  CAS  PubMed  Google Scholar 

  • Wen L, Qiu L, Wu Y, Hu X, Zhang X (2017) Aptamer-modified semiconductor quantum dots for biosensing applications. Sensors 17:1736

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu G, Zheng H, Xing Y, Wang C, Yuan X, Zhu X (2022) A sensitive electrochemical sensor for environmental toxicity monitoring based on tungsten disulfide nanosheets/hydroxylated carbon nanotubes nanocomposite. Chemosphere 286:131602

    Article  CAS  PubMed  Google Scholar 

  • Yaman YT, Vural OA, Bolat G, Abaci S (2020) One-pot synthesized gold nanoparticle-peptide nanotube modified disposable sensor for impedimetric recognition of miRNA 410. Sens Act B 320:128343

    Article  CAS  Google Scholar 

  • Yao Y, Jiang C, Ping J (2019) Flexible freestanding graphene paper-based potentiometric enzymatic aptasensor for ultrasensitive wireless detection of kanamycin. Biosens Bioelectron 123:178–184

    Article  CAS  PubMed  Google Scholar 

  • Yeung ML, Bennasser Y, Myers TG, Jiang G, Benkirane M, Jeang KT (2005) Changes in microRNA expression profiles in HIV-1-transfected human cells. Retrovirology 2:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu H, Guo W, Lu X, Xu H, Yang Q, Tan J, Zhang W (2021) Reduced graphene oxide nanocomposite based electrochemical biosensors for monitoring foodborne pathogenic bacteria. Food Control 127:108117

    Article  CAS  Google Scholar 

  • Zhang W, Du Y, Wang ML (2015) On-chip highly sensitive saliva glucose sensing using multilayer films composed of single-walled carbon nanotubes, gold nanoparticles, and glucose oxidase. Sens Bio-Sens Res 4:96–102

    Article  Google Scholar 

  • Zhao C, Li X, An S, Zheng D, Pei S, Zheng X, Liu Y, Yao Q, Yang M, Dai L (2019) Highly sensitive and selective electrochemical immunosensors by substrate-enhanced electroless deposition of metal nanoparticles onto three-dimensional graphene@Ni foams. Sci Bull 64:1272–1279

    Article  CAS  Google Scholar 

  • Zhou Y (2008) Lipid nanotubes: formation, templating nanostructures and drug nanocarriers. Crit Rev Solid State Mater Sci 33:183–196

    Article  CAS  Google Scholar 

  • Zhou J, Qiu X, Su K, Xu G, Wang P (2016) Disposable poly (o-aminophenol)-carbon nanotubes modified screenprint electrode-based enzyme sensor for electrochemical detection ofmarine toxin okadaic acid. Sens Act B 235:170–178

    Article  CAS  Google Scholar 

  • Zhu X, Wu G, Lua N, Yuan X, Li B (2017) A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants. J Hazard Mater 324:272–280

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulsah Congur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Congur, G. (2023). Disposable Electrochemical Nanobiosensors for Biomolecular Analysis. In: Azad, U.P., Chandra, P. (eds) Handbook of Nanobioelectrochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-19-9437-1_26

Download citation

Publish with us

Policies and ethics