Skip to main content

Information and Communication Technology in Transit Signal Priority Systems: A Review

  • Chapter
  • First Online:
Information and Communication Technology for Competitive Strategies (ICTCS 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 615))

  • 389 Accesses

Abstract

Prioritizing transit vehicles at signalized intersections is an important step toward reducing the overall person delay at intersections and in turn reducing the total travel time of passengers. For several decades researchers have proposed solutions to provide Transit Signal Priority (TSP), and recent advances in Information and Communication Technology (ICT) and its application in traffic management have triggered its usage in TSP. In this article, a review of existing TSP systems is conducted emphasizing the role of ICT in its implementation. It is observed from the review that TSP is being adopted worldwide at various levels. Most of the solutions proposed are location specific, and the implementation is demonstrated through simulations. TSP systems for heterogeneous traffic are scanty. The state-of-art technologies for data collection such as sensors and GPS, for computation such as cloud, fog, edge, and technologies for V2X and I2I communications are the base to implement the solutions currently. Overall, the ICT plays a cardinal role in the implementation of TSP, with the long-term benefits, TSP is expected to penetrate every city that aims at providing sustainable and smooth commuting for its citizens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashwini BP, Savithramma RM, Sumathi R (2022) Artificial intelligence in smart city applications: an overview. In: 6th international conference on intelligent computing and control systems (ICICCS), 2022, pp 986–993. https://doi.org/10.1109/iciccs53718.2022.9788152

  2. Savithramma RM, Ashwini BP, Sumathi R (2022) Smart mobility implementation in smart cities: a comprehensive review on state-of-art technologies. In: 2022 4th international conference on smart systems and inventive technology (ICSSIT), pp 10–17. https://doi.org/10.1109/ICSSIT53264.2022.9716288

  3. Qadri SS, Gökçe MA, Öner E (2020) State-of-art review of traffic signal control methods: challenges and opportunities. Eur Transp Res Rev 12(1). https://doi.org/10.1186/s12544-020-00439-1

  4. Savithramma RM, Sumathi R (2020) Road traffic signal control and management system: a survey. In: Proceedings of the 3rd international conference on intelligent sustainable systems (ICISS 2020), pp 104–110. https://doi.org/10.1109/ICISS49785.2020.9315970

  5. Lin Y, Yang X, Zou N, Franz M (2015) Transit signal priority control at signalized intersections: a comprehensive review. Transp Lett 7(3):168–180. https://doi.org/10.1179/1942787514Y.0000000044

    Article  Google Scholar 

  6. Mahendran A, Hebert M, Smith S, Xie XF (2014) Bus detection for adaptive traffic signal control, p 26 [Online]. Available at: http://utc.ices.cmu.edu/utc/CMU%20Reports%202013%202/Final%20UTC-report.pdf

  7. Vanajakshi L, Subramanian SC, Sivanandan R (2009) Travel time prediction under heterogeneous traffic conditions using global positioning system data from buses. IET Intell Transp Syst 3(1):1–9. https://doi.org/10.1049/iet-its:20080013

    Article  Google Scholar 

  8. Ekeila W, Sayed T, El Esawey M (2009) Development of dynamic transit signal priority strategy. Transp Res Rec 2111:1–9. https://doi.org/10.3141/2111-01

    Article  Google Scholar 

  9. Zhou L, Wang Y, Liu Y (2017) Active signal priority control method for bus rapid transit based on Vehicle Infrastructure Integration. Int J Transp Sci Technol 6(2):99–109. https://doi.org/10.1016/j.ijtst.2017.06.001

    Article  Google Scholar 

  10. Oliveira-Neto FM, Loureiro CFG, Han LD (2009) Active and passive bus priority strategies in mixed traffic arterials controlled by SCOOT adaptive signal system: assessment of performance in Fortaleza, Brazil. Transp Res Rec 2128:58–65. https://doi.org/10.3141/2128-06

    Article  Google Scholar 

  11. Lin Y, Yang X, Zou N (2019) Passive transit signal priority for high transit demand: model formulation and strategy selection. Transp Lett 11(3):119–129. https://doi.org/10.1080/19427867.2017.1295899

    Article  Google Scholar 

  12. Skabardonis A (2000) Control strategies for transit priority. Transp Res Rec 1727:20–26. https://doi.org/10.3141/1727-03

    Article  Google Scholar 

  13. Smith HR, Hemily G, Brendon I, Miomir F (2005) Transit signal priority: a planning and implementation handbook. Transp Res 4:212

    Google Scholar 

  14. Suresh S, Vasantha S (2018) Influence of ICT in road transportation. Majlesi J Electr Eng 12(4):49–56

    Google Scholar 

  15. Thodi BT, Chilukuri BR, Vanajakshi L (2021) An analytical approach to real-time bus signal priority system for isolated intersections. J Intell Transp Syst Technol Plann Oper 145–167. https://doi.org/10.1080/15472450.2020.1797504

  16. Moghimi B, Kamga C, Zamanipour M (2020) Look-ahead transit signal priority control with self-organizing logic. J Transp Eng Part A Syst 146(6):1–12. https://doi.org/10.1061/jtepbs.0000364

    Article  Google Scholar 

  17. Ren Y, Zhao J, Zhou X (2021) Optimal design of scheduling for bus rapid transit by combining with passive signal priority control. Int J Sustain Transp 15(5):407–418. https://doi.org/10.1080/15568318.2020.1740954

    Article  Google Scholar 

  18. Yang K, Menendez M, Guler SI (2019) Implementing transit signal priority in a connected vehicle environment with and without bus stops. Transp B: Transp Dyn 7(1):423–445. https://doi.org/10.1080/21680566.2018.1434019

    Article  Google Scholar 

  19. Bugg Z, Crisafi J, Lindstrom E, Ryus P (2016) Effect of transit preferential treatments on vehicle travel time

    Google Scholar 

  20. Ghaffari A, Mesbah M, Khodaii A (2020) Designing a transit priority network under variable demand. Transp Lett 12(6):429–442. https://doi.org/10.1080/19427867.2019.1629564

    Article  Google Scholar 

  21. Ashwini BP, Sumathi R (2020) Data sources for urban traffic prediction: a review on classification, comparison and technologies. In: Proceedings of the 3rd international conference on intelligent sustainable systems (ICISS), pp 628–635. https://doi.org/10.1109/ICISS49785.2020.9316096

  22. Hu J, Park B, Parkany AE (2014) Transit signal priority with connected vehicle technology. Transp Res Rec 2418:20–29. https://doi.org/10.3141/2418-03

    Article  Google Scholar 

  23. Gang X et al (2015) Continuous travel time prediction for transit signal priority based on a deep network. In: IEEE conference on intelligent transportation systems proceedings (ITSC), pp 523–528. https://doi.org/10.1109/ITSC.2015.92

  24. Alizadeh Shabestray SM, Abdulhai B (2019) Multimodal iNtelligent Deep (MiND) traffic signal controller. In: 2019 IEEE intelligent transportation systems conference (ITSC), pp 4532–4539. https://doi.org/10.1109/ITSC.2019.8917493

  25. Chung E, Long M, Zou X, Zhou Y (2021) Deep reinforcement learning for transit signal priority in a connected environment. SSRN Electron J. https://doi.org/10.2139/ssrn.3992999

    Article  Google Scholar 

  26. Guerrero-Ibáñez J, Zeadally S, Contreras-Castillo J (2018) Sensor technologies for intelligent transportation systems. Sensors (Switzerland) 18(4):1–24. https://doi.org/10.3390/s18041212

    Article  Google Scholar 

  27. Dixit V, Nair DJ, Chand S, Levin MW (2020) A simple crowdsourced delay-based traffic signal control. PLoS ONE 15(4):1–12. https://doi.org/10.1371/journal.pone.0230598

    Article  Google Scholar 

  28. Lak HJ, Gholamhosseinian A, Seitz J (2022) Distributed vehicular communication protocols for autonomous intersection management. Procedia Comput Sci 201(C):150–157. https://doi.org/10.1016/j.procs.2022.03.022

  29. Orozco AM, Michoud R, Llano G (2013) Routing protocols simulation for efficiency applications in vehicular environments. Sist Telemática 11(27):27. https://doi.org/10.18046/syt.v11i27.1693

    Article  Google Scholar 

  30. V2X Communications Message Set Dictionary (2020) SAE Int

    Google Scholar 

  31. Sahil, Sood SK (2021) Smart vehicular traffic management: an edge cloud centric IoT based framework. Internet Things (Netherlands) 14. https://doi.org/10.1016/j.iot.2019.100140

  32. Qiong WU, Fanfan HE, Xiumei FAN (2018) The intelligent control system of traffic light based on fog computing. Chin J Electron 27(6):1265–1270. https://doi.org/10.1049/cje.2018.09.015

    Article  Google Scholar 

  33. Yang J (2020) Design traffic signal node based on edge computing. J Phys Conf Ser 1575(1). https://doi.org/10.1088/1742-6596/1575/1/012198

  34. Mohammadi R, Roncoli C, Mladenović MN (2021) Signalised intersection control in a connected vehicle environment: user throughput maximisation strategy. IET Intell Transp Syst 15(3):463–482. https://doi.org/10.1049/itr2.12038

    Article  Google Scholar 

  35. Malandraki G, Papamichail I, Papageorgiou M, Dinopoulou V (2015) Simulation and evaluation of a public transport priority methodology. Transp Res Procedia 6:402–410. https://doi.org/10.1016/j.trpro.2015.03.030

  36. Hu J, Park BB, Lee YJ (2016) Transit signal priority accommodating conflicting requests under Connected Vehicles technology. Transp Res Part C Emerg Technol 69:173–192. https://doi.org/10.1016/j.trc.2016.06.001

    Article  Google Scholar 

  37. Zamanipour M, Larry Head K, Feng Y, Khoshmagham S (2016) Effcient priority control model for multimodal traffic signals. Transp Res Rec 2557:86–99. https://doi.org/10.3141/2557-09

  38. Girijan A, Vanajakshi LD, Chilukuri BR (2021) Dynamic thresholds identification for green extension and red truncation strategies for bus priority. IEEE Access 9:64291–64305. https://doi.org/10.1109/ACCESS.2021.3074361

    Article  Google Scholar 

  39. Yu Z, Gayah VV, Christofa E (2018) Implementing phase rotation in a person-based signal timing optimization framework. In: IEEE conference on intelligent transportation systems proceedings (ITSC), pp 20–25. https://doi.org/10.1109/ITSC.2018.8569671

  40. Xianmin S, Mili Y, Di L, Lin M (2018) Optimization method for transit signal priority considering multirequest under connected vehicle environment. J Adv Transp 2018. https://doi.org/10.1155/2018/7498594

  41. Sun X, Lin K, Jiao P, Lu H (2020) Signal timing optimization model based on bus priority. Information 11(6):1–17. https://doi.org/10.3390/info11060325

    Article  Google Scholar 

  42. Zhang WH, Lu HP, Shi Q, Liu Q (2004) Optimal signal-planning method of intersections based on bus priority. J Traffic Transp Eng 4(3):49–53. https://doi.org/10.11648/j.ajtte.20180301.11

    Article  Google Scholar 

  43. Mei Z, Tan Z, Zhang W, Wang D (2019) Simulation analysis of traffic signal control and transit signal priority strategies under Arterial Coordination Conditions. SIMULATION 95(1):51–64. https://doi.org/10.1177/0037549718757651

    Article  Google Scholar 

  44. Teng K, Liu H, Rai L (2019) Transit priority signal control scheme considering the coordinated phase for single-ring sequential phasing under connected vehicle environment. IEEE Access 7:61057–61069. https://doi.org/10.1109/ACCESS.2019.2915665

    Article  Google Scholar 

  45. Zhang Y, Yang T, Tan J, Qiu TZ (2019) Research on transit signal priority strategy of single intersection based on V2X environment. In: ICTIS 2019—5th international conference on transportation information and safety, pp 356–363. https://doi.org/10.1109/ICTIS.2019.8883556

  46. Long K, Wei J, Gu J, Yang X (2020) Headway-based multi-route transit signal priority at isolated intersection. IEEE Access 8:187824–187831. https://doi.org/10.1109/ACCESS.2020.3030686

    Article  Google Scholar 

  47. Zeng X, Zhang Y, Jiao J, Yin K (2021) Route-based transit signal priority using connected vehicle technology to promote bus schedule adherence. IEEE Trans Intell Transp Syst 22(2):1174–1184. https://doi.org/10.1109/TITS.2020.2963839

    Article  Google Scholar 

  48. Xu M, Chai J, Yan Y, Qu X (2022) Multi-agent fuzzy-based transit signal priority control for traffic network considering conflicting priority requests. IEEE Trans Intell Transp Syst 23(2):1554–1564. https://doi.org/10.1109/TITS.2020.3045122

    Article  Google Scholar 

  49. Hu J, Zhang Z, Feng Y, Sun Z, Li X, Yang X (2021) Transit signal priority enabling connected and automated buses to cut through traffic. IEEE Trans Intell Transp Syst 23(7):1–11. https://doi.org/10.1109/tits.2021.3086110

    Article  Google Scholar 

  50. Shu S, Zhao J, Han Y (2018) Signal timing optimization for transit priority at near-saturated intersections. J Adv Transp 2018. https://doi.org/10.1155/2018/8502804

  51. Wu K, Lu M, Guler SI (2020) Modeling and optimizing bus transit priority along an arterial: a moving bottleneck approach. Transp Res Part C Emerg Technol 121. https://doi.org/10.1016/j.trc.2020.102873

  52. Colombaroni C, Fusco G, Isaenko N (2020) A simulation-optimization method for signal synchronization with bus priority and driver speed advisory to connected vehicles. Transp Res Procedia 45(2019):890–897. https://doi.org/10.1016/j.trpro.2020.02.079

    Article  Google Scholar 

  53. Li J, Liu Y, Yang H, Chen B (2020) Bus priority signal control considering delays of passengers and pedestrians of adjacent intersections. J Adv Transp 2020. https://doi.org/10.1155/2020/3935795

  54. Luo M, Mi J, Zhang Y, He S, Lu H, Peng L (2021) A multi-phase adjustment strategy for transit priority signal control in V2I environment. https://doi.org/10.1109/ICTIS54573.2021.9798478

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Ashwini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ashwini, B.P., Savithramma, R.M., Sumathi, R., Sudhira, H.S. (2023). Information and Communication Technology in Transit Signal Priority Systems: A Review. In: Kaiser, M.S., Xie, J., Rathore, V.S. (eds) Information and Communication Technology for Competitive Strategies (ICTCS 2022). Lecture Notes in Networks and Systems, vol 615. Springer, Singapore. https://doi.org/10.1007/978-981-19-9304-6_71

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9304-6_71

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9303-9

  • Online ISBN: 978-981-19-9304-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics