Skip to main content

Multiple Residual Quantization of Pruning

  • Conference paper
  • First Online:
Data Mining and Big Data (DMBD 2022)

Abstract

Model compression technology investigates the compression of deep neural networks by quantizing the full-precision weights of the network into low-bit ones, to achieve network acceleration. However, most of the existing quantization operations are calculated by simple thresholding operations, which will lead to serious precision loss. In this paper, we propose a new quantization framework combined with pruning, called Multiple Residual Quantization of Pruning (MRQP), to achieve higher precision quantization neural network (QNN). MRQP recursively performs quantization of the full-precision weights by combining the low-bit weights stem and residual parts many times, to minimize the error between the quantized weights and the full-precision weights, and to ensure higher precision quantization. At the same time, MRQP prunes some weights that have less impact on loss function to further reduce model size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pradhyumna, P., Shreya, G.P.: Graph neural network (GNN) in image and video understanding using deep learning for computer vision applications. In: International Conference on Electronics and Sustainable Communication Systems (ICESC), pp. 1183–1189 (2021). https://doi.org/10.1109/ICESC51422.2021.9532631

  2. Zhang, X., Yi, W.J., Saniie, J.: Home surveillance system using computer vision and convolutional neural network. In: International Conference on Electro Information Technology (EIT), pp. 266–270 (2019). https://doi.org/10.1109/EIT.2019.8833773

  3. Bantupalli, K., Xie, Y.: American sign language recognition using deep learning and computer vision. IEEE International Conference on Big Data (Big Data), pp. 4896–4899 (2018). https://doi.org/10.1109/BigData.2018.8622141

  4. Nassif, A.B., Shahin, I., Attili, I., et al.: Speech recognition using deep neural networks: a systematic review[J]. IEEE ACCESS 7, 19143–19165 (2019)

    Article  Google Scholar 

  5. Shewalkar, A.: Performance evaluation of deep neural networks applied to speech recognition: RNN, LSTM and GRU. J. Artif Intell. Soft Comput. Res. 9(4), 235–245 (2019)

    Article  Google Scholar 

  6. Lokesh, S., Malarvizhi Kumar, P., Ramya Devi, M., et al.: An automatic Tamil speech recognition system by using bidirectional recurrent neural network with self-organizing map[J]. Neural Comput. Appl. 31(5), 1521–1531 (2019)

    Article  Google Scholar 

  7. Giménez, M., Palanca, J., Botti, V.: Semantic-based padding in convolutional neural networks for improving the performance in natural language processing. a case of study in sentiment analysis. Neurocomputing 378, 315–323 (2020)

    Google Scholar 

  8. Galassi, A., Lippi, M., Torroni, P.: Attention in natural language processing. IEEE Trans. Neural Netw. Learn. Syst. 32(10), 4291–4308 (2020)

    Article  Google Scholar 

  9. Moon, J., Kim, H., Lee, B.: View-point invariant 3D classification for mobile robots using a convolutional neural network. Int. J. Control Autom. Syst. 16(6), 2888–2895 (2018)

    Article  Google Scholar 

  10. Zeng, R., Zeng, C., Wang, X., Li, B., Chu, X.: Incentive mechanism for federated learning and game-theoretical approach. IEEE Netw. (Early Access), 1–7 (2022)

    Google Scholar 

  11. Zhang, T., Ma, L., Liu, Q., et al.: Genetic programming for ensemble learning in face recognition. In: International Conference on Sensing and Imaging. Springer, Cham, pp. 209–218 (2022) https://doi.org/10.1007/978-3-031-09726-319

  12. Ma, L., Wang, X., Huang, M., Lin, Z., Tian, L., Chen, H.: Two-level master-slave rfid networks planning via hybrid multi-objective artificial bee colony optimizer. IEEE Trans. Syst. Man Cybernet. Syst. 49(5), 861–880 (2019)

    Google Scholar 

  13. Lianbo. M., Cheng, S., Shi, M.: Enhancing learning efficiency of brain storm optimization via orthogonal learning design. IEEE Trans. Syst. Man Cybernet.: Syst. 51(11), 6723–6742 (2021)

    Google Scholar 

  14. Ma, L., Huang, M., Yang, S., Wang, R., Wang, X.: An adaptive localized decision variable analysis approach to large-scale multiobjective and many-objective optimization. IEEE Trans. Cybern. 52(7) (2022)

    Google Scholar 

  15. Molchanov, P., Mallya, A., Tyree, S., et al.: Importance estimation for neural network pruning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11264–11272 (2019). https://doi.org/10.1109/CVPR.2019.01152

  16. Yang, Y., Qiu, J., Song, M., et al.: Distilling knowledge from graph convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7074–7083 (2020). https://doi.org/10.1109/CVPR42600.2020.00710

  17. Liu, F., Wu, X., Ge, S., et al.: Exploring and distilling posterior and prior knowledge for radiology report generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13753–13762 (2021). https://doi.org/10.1109/CVPR46437.2021.01354

  18. Li, Y., Ding, W., Liu, C., et al.: TRQ: Ternary neural networks with residual quantization. Proc. AAAI Conf. Artif. Intell. 35(10), 8538–8546 (2021). https://doi.org/10.1609/aaai.v35i10.17036

    Article  Google Scholar 

  19. Qu, Z., Zhou, Z., Cheng, Y., et al.: Adaptive loss-aware quantization for multi-bit networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7988–7997 (2020). https://doi.org/10.1109/CVPR42600.2020.00801

  20. Peng, H., Wu, J., Zhang, Z., et al.: Deep network quantization via error compensation. IEEE Trans. Neural Netw. Learn. Syst. 33(9), 4960–4970 (2021)

    Article  Google Scholar 

  21. Chen, P., Zhuang, B., Shen, C.: FATNN: fast and accurate ternary neural networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5219–5228 (2021). https://doi.org/10.1109/ICCV48922.2021.00517

  22. Courbariaux, M., Bengio, Y., David, J.P.: BinaryConnect: training deep neural networks with binary weights during propagations. Adv. Neural. Inf. Process. Syst. 2, 3123–3131 (2015)

    Google Scholar 

  23. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_32

    Chapter  Google Scholar 

  24. Zhu, C., Han, S., Mao, H., et al.: Trained ternary quantization (2016). https://arxiv.org/abs/1612.01064

  25. Nahshan, Y., Chmiel, B., Baskin, C., et al.: Loss aware post-training quantization. Mach. Learn. 10(11), 3245–3262 (2021)

    Article  MATH  Google Scholar 

  26. Yin, P., Lyu, J., Zhang, S,. et al.: Understanding straight-through estimator in training activation quantized neural nets (2019). https://arxiv.org/abs/1903.05662

  27. Yang, J., Shen, X., Xing, J., et al.: Quantization networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7308–7316 (2019). https://doi.org/10.1109/CVPR.2019.00748

  28. Liu, Z., Wang, Y., Han, K., et al.: Post-training quantization for vision transformer. Adv. Neural. Inf. Process. Syst. 34, 28092–28103 (2021)

    Google Scholar 

  29. Nedic, A., Olshevsky, A., Ozdaglar, A., et al.: On distributed averaging algorithms and quantization effects. IEEE Trans. Autom. Control 54(11), 2506–2517 (2009)

    Article  MATH  Google Scholar 

  30. Deng, L., Jiao, P., Pei, J., et al.: GXNOR-Net: training deep neural networks with ternary weights and activations without full-precision memory under a unified discretization framework[J]. Neural Netw. 100, 49–58 (2018)

    Article  MATH  Google Scholar 

  31. Bulat, A., Tzimiropoulos, G.: XNOR-Net++: improved Binary Neural Networks (2019). https://arxiv.org/abs/1909.13863

  32. Kim, H., Kim, K., Kim, J., et al.: BinaryDuo: reducing gradient mismatch in binary activation network by coupling binary activations. In: International Conference on Learning Representations (2019). https://doi.org/10.48550/arXiv.2002.06517

  33. Kim, D., Lee, J., Ham, B.: Distance-aware quantization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5271–5280 (2021). https://doi.org/10.1109/ICCV48922.2021.00522

  34. Hou, L., Yao, Q., Kwok, J.T.Y.: Loss-aware binarization of deep networks. In: International Conference on Learning Representations (2017). https://ui.adsabs.harvard.edu/abs/2016arXiv161101600H

  35. Zhang, D., Yang, J., Ye, D., Hua, G.: LQ-Nets: learned quantization for highly accurate and compact deep neural networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 373–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_23

    Chapter  Google Scholar 

  36. Louizos, C., Reisser, M., Blankevoort, T., et al.: Relaxed quantization for discretized neural networks. In: International Conference on Learning Representations (2018). https://doi.org/10.48550/arXiv.1810.01875

  37. Miyashita, D., Lee, E.H., Murmann, B.: Convolutional neural networks using logarithmic data representation (2016). https://arxiv.org/abs/1603.01025v1

Download references

Acknowledgments

This work is partially suported by NSFC under grant No. 62172083 and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LianBo Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Y., Kang, H., Zhang, T., Ma, L., Xing, T. (2022). Multiple Residual Quantization of Pruning. In: Tan, Y., Shi, Y. (eds) Data Mining and Big Data. DMBD 2022. Communications in Computer and Information Science, vol 1744. Springer, Singapore. https://doi.org/10.1007/978-981-19-9297-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9297-1_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9296-4

  • Online ISBN: 978-981-19-9297-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics