Skip to main content

Modelling and Optimization of Interior Permanent Magnet Motor for Electric Vehicle Applications and Effect on Sustainable Transportation

  • Conference paper
  • First Online:
Sustainable Design and Manufacturing (SDM 2022)

Abstract

Electric vehicles support low‐carbon emissions that facilitate sustainable transportation. This paper explores different design parameters to optimize an interior permanent magnet synchronous motor that contributes to enhancing motor performance hence advancement of sustainable transportation. Various geometry parameters such as magnet dimension, machine diameter, stator teeth height, and number of pole pair are analysed to compare overall torque, power, and torque ripples in order to select the best design parameters and their ranges. Pyleecan, a comparatively new open-source software, is used to design and optimize the motor for electric vehicle applications. It is verified with Motor-CAD software to observe the performance of the Pyleecan software. Following optimisation with NSGA-II algorithm, two designs A and B were obtained for two different objective functions of maximizing torque and minimizing torque ripple and the corresponding torque ripples values of the design A and B are later reduced by 32% and 77%. Additionally, the impact of different magnet grades on the output performances are analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelmoula, R., Hadj, N.B., Chaieb, M., Neji, R.: Reducing torque ripples in permanent magnet synchronous motor. J. Electr. Syst. 13(3), 528–542 (2017)

    Google Scholar 

  2. Sheela, A., Atshaya, M.: Design of permanent magnet synchronous motor for electric vehicle application using finite element analysis. Int. J. Sci. Technol. Res. 9, 523–527 (2020)

    Google Scholar 

  3. Dalcali, A., Kurt, E., Çelik, E., Öztürk, N.: Cogging torque minimization using skewed and separated magnet geometries. Politeknik Dergisi 23, 223–230 (2020)

    Google Scholar 

  4. Xu, P., Shi, K., Sun, Y., Zhua, H.: Effect of pole number and slot number on performance of dual rotor permanent magnet wind power generator using ferrite magnets. AIP Adv. 7(5), 056631 (2017)

    Article  Google Scholar 

  5. Xu, Q., Sun, J., Wang, W., Mao, Y., Cui, S.: Design optimization of an electric variable transmission for hybrid electric vehicles. Energies 11(5), 1118 (2018)

    Article  Google Scholar 

  6. Chaieb, M., Tounsi, S., Neji, R., Sellami, F.: Optimum geometry for torque ripple minimization of permanent magnet motor by the finite element method. In: MELECON 2008 – The 14th IEEE Mediterranean Electrotechnical Conference, pp. 459–464 (2008)

    Google Scholar 

  7. Zhu, Z.Q., Howe, D.: Influence of design parameters on cogging torque in permanent magnet machines. IEEE Trans. Energy Convers. 15(4), 407–412 (2000)

    Article  Google Scholar 

  8. Hwang, M.H., Lee, H.S., Cha, H.R.: Analysis of torque ripple and cogging torque reduction in electric vehicle traction platform applying rotor notched design. Energies 11(11), 3053 (2018)

    Article  Google Scholar 

  9. Aydin, E., Li, Y., Aydin, I., Aydemir, M.T., Sarlioglu, B.: Minimization of torque ripples of interior permanent magnet synchronous motors by particle swarm optimization technique. In: 2015 IEEE Transportation Electrification Conference and Expo (ITEC), pp.1–6. IEEE (2015)

    Google Scholar 

  10. Chu, W.Q., Zhu, Z.Q.: Investigation of torque ripples in permanent magnet synchronous machines with skewing. IEEE Trans. Magn. 49(3), 1211–1220 (2012)

    Article  Google Scholar 

  11. Constantin, A.I., Dumitru, C., Tudor, E., Vasile, I., Arsene, M.: Studies related to the optimization of an interior permanent magnet synchronous machine designed for the electric vehicles. In: 2021 International Conference on Applied and Theoretical Electricity (ICATE), pp. 1–5. IEEE (2021)

    Google Scholar 

  12. Estore.ricardo.com. 2021. Ricardo Tesla Model 3 2018 motor analysis with winding diagram – Ricardo eStore. https://estore.ricardo.com/en/2018-tesla-model-3-motor-reportwith-winding-analysis-c-23-c-70-p-481

  13. Pyleecan: https://www.pyleecan.org/ (2021)

  14. Motor-CAD Software: https://www.motor-design.com/motor-cad/ (2021)

  15. Neodymium Iron Boron Magnets: Arnold Magnetic Technologies, Rochester, NY, USA. http://www.arnoldmagnetics.com/en-us/Products/Neodymium-Magnets (2022). Accessed 24 Mar 2022

  16. Toulabi, M.S., Salmon, J., Knight, A.M.: Concentrated winding IPMsynchronous motor design for wide field weakening applications. IEEE Trans. Ind. Appl. 53(3), 1892–1900 (2017)

    Article  Google Scholar 

  17. Bonneel, P., Le Besnerais, J., Pile, R., Devillers, E.: Pyleecan: an open-source Python object-oriented software for the multiphysic design optimization of electrical machines. In: 2018 XIII International Conference on Electrical Machines (ICEM), pp. 948–954. IEEE (2018)

    Google Scholar 

  18. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M.T.: A fast and elitist mul-tiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  19. Benlamine, R., Dubas, F., Randi, S.A., Lhotellier, D., Espanet, C.: Design by optimization of an axial-flux permanent-magnet synchronous motor using genetic algorithms. In: 2013 International Conference on Electrical Machines and Systems (ICEMS), pp. 13–17. IEEE (2013)

    Google Scholar 

  20. Le Besnerais, J., Lanfranchi, V., Hecquet, M., Brochet, P.: Multiobjective optimization of induction machines including mixed variables and noise minimization. IEEE Trans. Magn. 44(6), 1102–1105 (2008)

    Article  Google Scholar 

  21. MATLAB R2018b: https://www.mathworks.com/products/matlab.html (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurul Azim Bhuiyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhuiyan, N.A., Balasubramanian, L., Fahmy, A.A., Belblidia, F., Sienz, J. (2023). Modelling and Optimization of Interior Permanent Magnet Motor for Electric Vehicle Applications and Effect on Sustainable Transportation. In: Scholz, S.G., Howlett, R.J., Setchi, R. (eds) Sustainable Design and Manufacturing. SDM 2022. Smart Innovation, Systems and Technologies, vol 338. Springer, Singapore. https://doi.org/10.1007/978-981-19-9205-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9205-6_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9204-9

  • Online ISBN: 978-981-19-9205-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics