Skip to main content

Model Performance Evaluation using Streamflow and Potential Evapotranspiration over Middle Tapi Basin, India

  • Conference paper
  • First Online:
Hydrology and Hydrologic Modelling (HYDRO 2021)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 312))

  • 240 Accesses

Abstract

Integrated watershed planning, management and decision-making are important for the efficient utilization of available water resources. The physics-based hydrological models enable quantitative and qualitative evaluation of water at different spatial and temporal scales. The current study aims to ascertain the reliability of hydrologic simulations using the SWAT hydrologic model. The model was developed for a climate-sensitive and agriculturally dominated catchment, i.e., the Middle Tapi basin (MTB), between Hatnur and Ukai reservoirs. The monthly inflows of the Ukai reservoir were utilized to calibrate and validate the SWAT model for 1998–2007 and 2008–2013, respectively. The simulated potential evapotranspiration (PET) at the basin scale was compared with CRU-PET data to ascertain the reliability of the simulated variable. The global sensitivity analysis shows that GWQMN.gw, REVAPMN.gw, GW_REVAP.gw, SOL_K.sol, CNCOEF.bsn, SOL_AWC.sol are the most sensitive parameters at 5% significance level. The model performance metrics, namely KGE, NSE, R2 and PBIAS with respect to observed streamflow during calibration (validation) period are 0.98 (0.98), 0.98 (0.97), 0.98 (0.97) and 0.6% (−1.2%), respectively. The similar statistics for PET during simulation period (1998–2013) are 0.73, 0.84, 0.94 and −4.36%, respectively. The model performance metrics show that the hydrologic model reliably simulates monthly inflows into the Ukai reservoir and PET in MTB. Thus, the developed model can accurately forecast hydrologic changes in response to climate instability in the study area, allowing for better water management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghoraba SM (2015) Hydrological modeling of the Simly Dam watershed (Pakistan) using GIS and SWAT model. Alex Eng J 54(3):583–594

    Article  Google Scholar 

  2. Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydro-logic modeling and assessment part I: model development 1. JAWRA J Am Water Resour Assoc 34(1):73–89

    Article  Google Scholar 

  3. Arnold JG, Allen PM, Volk M, Williams JR, Bosch DD (2010) Assessment of different representations of spatial variability on SWAT model performance. Trans ASABE 53(5):1433–1443

    Article  Google Scholar 

  4. Abbaspour KC (2015) SWAT Calibration and uncertainty programs—A user manual. Swiss Federal Institute of Aquatic Science and Technology, Eawag, Switzerland

    Google Scholar 

  5. Abbaspour KC, Vaghefi SA, Srinivasan R (2018) A guideline for successful calibration and uncertainty analysis for soil and water assessment: a review of papers from the 2016 international SWAT conference.

    Google Scholar 

  6. Kouchi DH, Esmaili K, Faridhosseini A, Sanaeinejad SH, Khalili D, Abbaspour KC (2017) Sensitivity of calibrated parameters and water resource estimates on different objective functions and optimization algorithms. Water 9(6):384

    Article  Google Scholar 

  7. Leta OT, Van Griensven A, Bauwens W (2017) Effect of single and multisite calibration techniques on the parameter estimation, performance, and output of a SWAT model of a spatially heterogeneous catchment. J Hydrol Eng 22(3):05016036

    Article  Google Scholar 

  8. Nkiaka E, Nawaz NR, Lovett JC (2018) Effect of single and multisite calibration techniques on hydrological model performance, parameter estimation and predictive uncertainty: a case study in the Logone catchment, Lake Chad basin. Stoch Environ Res Risk Assess 32(6):1665–1682

    Article  Google Scholar 

  9. White KL, Chaubey I (2005) Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model 1. JAWRA J Am Water Resour Assoc 41(5):1077–1089

    Article  Google Scholar 

  10. Cao W, Bowden WB, Davie T, Fenemor A (2006) Multivariable and multisite calibration and validation of SWAT in a large mountainous catchment with high spatial variability. Hydrol Process: Int J 20(5):1057–1073

    Article  Google Scholar 

  11. Chiang LC, Yuan Y, Mehaffey M, Jackson M, Chaubey I (2014) Assessing SWAT’s performance in the Kaskaskia River watershed as influenced by the number of calibration stations used. Hydrol Process 28(3):676–687

    Article  Google Scholar 

  12. Franco ACL, Bonumá NB (2017) Multivariable SWAT model calibration with remotely sensed evapotranspiration and observed flow. RBRH 22

    Google Scholar 

  13. Zhang J, Li Q, Guo B, Gong H (2015) The comparative study of multisite uncertainty evaluation method based on SWAT model. Hydrol Process 29(13):2994–3009

    Article  Google Scholar 

  14. Gehlot LK, Jibhakate SM, Sharma PJ, Patel PL, Timbadiya PV (2021) Spatio-temporal variability of rainfall indices and their teleconnections with El Niño-Southern Oscillation for Tapi Basin, India. Asia-Pacific J Atmos Sci 57:99–118

    Article  Google Scholar 

  15. Sharma PJ, Patel PL, Jothiprakash V (2019) Impact assessment of Hathnur reservoir on hydrological regimes of Tapi River, India. ISH J Hydraulic Engin 1–13

    Google Scholar 

  16. Ramkar P, Yadav SM (2019) Identification of critical watershed using hydrolog-ical model and drought indices: a case study of upper Girna, Maharashtra, India. ISH J Hydraul Eng 1–12

    Google Scholar 

  17. Sahana V, Timbadiya PV (2020) Spatiotemporal variation of water availability under changing climate: case study of the Upper Girna Basin, India. J Hydro-l Eng 25(5):05020004

    Article  Google Scholar 

  18. Moriasi DN, Gitau MW, Pai N, Daggupati P (2015) Hydrologic and water quality models: performance measures and evaluation criteria. Trans ASA-BE 58(6):1763–1785

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Indian National Committee on Climate Change, Ministry of Jal Shakti, Department of Water Resources, River Development & Ganga Rejuvenation, Government of India (GoI), and Centre of Excellence on 'Water Resources and Flood Management,' TEQIP-II, Ministry of Education, GoI, respectively, for providing funding and infrastructure facilities for this research. All data disseminating agencies, i.e., IMD Pune, TIDC Jalgaon, Ukai Civil Circle, NBSS&LUP Nagpur, and NRSC, Hyderabad, are duly acknowledged for providing necessary data to conduct the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhat Dwivedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dwivedi, P., Gehlot, L.K., Patel, P.L. (2023). Model Performance Evaluation using Streamflow and Potential Evapotranspiration over Middle Tapi Basin, India. In: Timbadiya, P.V., Patel, P.L., Singh, V.P., Sharma, P.J. (eds) Hydrology and Hydrologic Modelling. HYDRO 2021. Lecture Notes in Civil Engineering, vol 312. Springer, Singapore. https://doi.org/10.1007/978-981-19-9147-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9147-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9146-2

  • Online ISBN: 978-981-19-9147-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics