Skip to main content

‘Science is a Boys’ Subject’—Changing Perceptions in the Arabian Gulf

  • Chapter
  • First Online:
Gender in STEM Education in the Arab Gulf Countries
  • 147 Accesses

Abstract

In the United Arab Emirates, and internationally, great emphasis has been placed upon improving students’ performance in science, technology, engineering and mathematics (STEM) subjects and encouraging STEM careers. However, international studies have shown that even where there are no significant differences in mathematics and science achievement, women still remain less likely to enrol in STEM fields in higher education. Gender stereotyping, self-efficacy and attitudes towards science can potentially influence young women’s (and men’s) aspirations to pursue studies and careers in these fields. The sciences have a long association with ‘masculinity’, and evidence suggests that many children perceive that science, particularly the physical sciences, are ‘for boys’ and that scientists are generally male. However, attitudes towards science appear to be changing, with both male and female students in the Gulf Cooperation Council (GCC) region responding favourably to survey questions about liking, feeling confident in and valuing, science. Current strategies to overcome stereotypes; boost STEM self-efficacy, particularly for female students; positively utilise the influence of teachers; and use role models and other supports are discussed, and recommendations for what still can be done are made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderhag, P., Hamza, K. M., & Wick, P. (2014). What can a teacher do to support students’ interest in science? A study of the constitution of taste in a science classroom. Research in Science Education, 45, 749–784. https://doi.org/10.1007/s11165-014-9448-4.

  • Archer, L., DeWitt, J., Osborne, J., Dillon, J., Willis, B., & Wong, B. (2010). “Doing” science versus “being” a scientist: examining 10/11-year-old school children’s constructions of science through the lens of identity. Science Education, 94, 617–639. https://doi.org/10.1002/sce.20399

    Article  Google Scholar 

  • Archer, J., & MacRae, M. (1991). Gender perceptions of school subjects among 10–11-year-olds. British Journal of Educational Psychology, 61, 99–103. https://doi.org/10.1111/j.2044-8279.1991.tb00965.x

    Article  Google Scholar 

  • Archer, L., Moote, J., Macleod, E., Francis, B., & DeWitt, J. (2020). ASPIRES 2: Young people's science and career aspirations, age 10–19. UCL Institute of Education: London, UK.

    Google Scholar 

  • Baker, D. P., & Jones, D. P. (1993). Creating gender equality: Cross-national gender stratification and mathematical performance. Sociology of Education, 66(2), 91–103. https://doi.org/10.2307/2112795

    Article  Google Scholar 

  • Bandura, A., & Locke, E. A. (2003). Negative self-efficacy and goal effects revisited. Journal of Applied Psychology, 88, 87–99. https://doi.org/10.1037/0021-9010.88.1.87

    Article  Google Scholar 

  • Barnes, G., McInerney, D. M., & Marsh, H. W. (2005). Exploring sex differences in science enrolment intentions: An application of the general model of academic choice. The Australian Educational Researcher, 32(2), 1–23. https://doi.org/10.1007/BF03216817

    Article  Google Scholar 

  • Bell, K. N., & Norwood, K. (2007). Gender equity intersects with mathematics and technology: Problem- solving education for changing times. In D. Sadker & E. S. Silber (Eds.), Gender in the classroom (pp. 225–258). Lawrence Erlbaum Associates.

    Google Scholar 

  • Beller, M., & Gafni, N. (1996). The 1991 international assessment of educational progress in mathematics and sciences: the gender differences perspective. Journal of Educational Psychology, 88(2), 365–377.

    Article  Google Scholar 

  • Bettinger, E. P., & Long, B. T. (2005). Do faculty serve as role models? The impact of instructor gender on female students. Understanding Teacher Quality, 95(2), 152–157.

    Google Scholar 

  • Beyer, S. (1990). Gender differences in the accuracy of self-evaluations of performance. Journal of Personality and Social Psychology, 59(5), 960–970. https://doi.org/10.1037/0022-3514.59.5.960

    Article  Google Scholar 

  • Bhanot, R. T., & Jovanovic, J. (2009). The links between parent behaviors and boys’ and girls’ science achievement beliefs. Applied Developmental Science, 13(1), 42–59. https://doi.org/10.1080/10888690802606784

    Article  Google Scholar 

  • Breda, T., & Napp, C. (2019). Girls’ comparative advantage in reading can largely explain the gender gap in math-related fields. Proceedings of the National Academy of Sciences, 116(31), 15435–15440.

    Article  Google Scholar 

  • Brown, E. R., Thoman, D. B., Smith, J. L., & Diekman, A. B. (2015). Closing the communal gap: The importance of communal affordances in science career motivation. Journal of Applied Social Psychology, 45, 662–673.

    Article  Google Scholar 

  • Bubany, S. T., & Hansen, J. I. C. (2011). Birth cohort change in the vocational interests of female and male college students. Journal of Vocational Behavior, 78, 59–67. https://doi.org/10.1016/j.jvb.2010.08.002

    Article  Google Scholar 

  • Cakir, N. A., Gass, A., Foster, A., & Lee, F. J. (2017). Development of a game design workshop to promote young girls’ interest towards computing through identity exploration. Computers & Education, 108, 115–130.

    Article  Google Scholar 

  • Cakiroglu, J., Capa-Aydin, Y., & Hoy, A. W. (2012). Science teaching efficacy beliefs. In Second international handbook of science education (pp. 449–461). Springer, Dordrecht.

    Google Scholar 

  • Carli, L. L., Alawa, L., Lee, Y., Zhao, B., & Kim, E. (2016). Stereotypes about gender and science: Women ≠ scientists. Psychology of Women Quarterly, 40(2), 244–260. https://doi.org/10.1177/0361684315622645

    Article  Google Scholar 

  • Chambers, D. W. (1983). Stereotypic images of the scientist: The draw-a-scientist test. Science Education, 67(2), 255–265.

    Article  Google Scholar 

  • Charlesworth, T. E. S., & Banaji, M. R. (2019). Gender in science, technology, engineering, and mathematics: Issues, causes solutions. Journal of Neuroscience, 39(37), 7228–7243. https://doi.org/10.1523/JNEUROSCI.0475-18.2019

    Article  Google Scholar 

  • Cheryan, S., Ziegler, S. A., Montoya, A. K., & Jiang, L. (2017). Why are some STEM fields more gender balanced than others? Psychological Bulletin, 143(1), 1–35.

    Article  Google Scholar 

  • Cleary, A. (1991). Gender differences in aptitude and achievement test scores. In Sex equity in educational opportunity, achievement, and testing: Proceedings of the 1991 ETS Invitational Conference (pp. 51–90). Princeton, NJ: Educational Testing Service.

    Google Scholar 

  • Crowley, K., Callanan, M. A., Tenenbaum, H. R., & Allen, E. (2001). Parents explain more often to boys than to girls during shared scientific thinking. Psychological Science, 12(3), 258–261. https://doi.org/10.1111/1467-9280.00347

    Article  Google Scholar 

  • Cvencek, D., Kapur, M., & Meltzoff, A. N. (2015). Math achievement, stereotypes, and math self-concepts among elementary-school students in Singapore. Learning and Instruction, 39, 1–10. https://doi.org/10.1016/j.learninstruc.2015.04.002

    Article  Google Scholar 

  • Dasgupta, N., Scircle, M. M., & Hunsinger, M. (2015). Female peers in small work groups enhance women’s motivation, verbal participation, and career aspirations in engineering. Proceedings from the National Academy of Sciences, 112, 4988–4993. https://doi.org/10.1073/pnas.1422822112

    Article  Google Scholar 

  • Deaux, K., & LaFrance, M. (1998). Gender. In D. T. Gilbert, S. T. Fiske, & G. Lindzey (Eds.), The handbook of social psychology (pp. 788–827). McGraw-Hill.

    Google Scholar 

  • DeMars, C. F. (1998). Gender differences in mathematics and science on a high school proficiency exam: The role of response format. Applied Measurement in Education, 11, 279–299.

    Article  Google Scholar 

  • Dickson, M., McMinn, M., Cairns, D., & Osei-Tutu, S. (2021). Children’s perceptions of scientists, and of themselves as scientists. International Journal on Math, Science and Technology Education9, 643–669. https://doi.org/10.31129/LUMAT.9.1.1605.

  • Diekman, A. B., Brown, E. R., Johnston, A. M., & Clark, E. K. (2010). Seeking congruity between goals and roles: A new look at why women opt out of science, technology, engineering, and mathematics careers. Psychological Science, 21(8), 1051–1057.

    Article  Google Scholar 

  • Dimitrov, D. M. (1999). Gender differences in science achievement: Differential effect of ability, response format, and strands of learning outcomes. School Science and Mathematics, 99(8), 445–450.

    Article  Google Scholar 

  • Dweck, C. (2006). Mindset: The new psychology of success. Ballantine Press.

    Google Scholar 

  • Eagly, A. H., & Karau, S. J. (2002). Role congruity theory of prejudice toward female leaders. Psychological Review, 109, 573–598.

    Article  Google Scholar 

  • Eccles, J. S. (1994). Understanding women’s educational and occupational choices: Applying the Eccles et al. model of achievement-related choices. Psychology of Women Quarterly, 18, 585–609.

    Google Scholar 

  • Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychological Bulletin, 136(1), 103–127. https://doi.org/10.1037/a0018053

    Article  Google Scholar 

  • Else-Quest, N. M., Mineo, C. C., & Higgins, A. (2013). Math and science attitudes and achievement at the intersection of gender and ethnicity. Psychology of Women Quarterly, 37(3), 293–309. https://doi.org/10.1177/0361684313480694

    Article  Google Scholar 

  • Engelhard, G. (1990). Gender differences in performance on mathematics items: Evidence from the United States and Thailand. Contemporary Educational Psychology, 15, 13–26.

    Article  Google Scholar 

  • Ertl, B., Luttenberger, S., & Paechter, M. (2017). The impact of gender stereotypes on the self-concept of female students in stem subjects with an underrepresentation of females. Frontiers in Psychology, 8(703). https://doi.org/10.3389/fpsyg.2017.00703.

  • Farrell, L., & McHugh, L. (2017). Examining gender-STEM bias among STEM and non-STEM students using the implicit relational assessment procedure (IRAP). Journal of Contextual Behavioral Science, 6(1), 80–90. https://doi.org/10.1016/j.jcbs.2017.02.001

    Article  Google Scholar 

  • Federer, M. R., Nehm, R. H., & Pearl, D. K. (2016). Examining gender differences in written assessment tasks in biology: A case study of evolutionary explanations. CBE Life Sciences Education15(1), ar2. https://doi.org/10.1187/cbe.14-01-0018.

  • Feingold, A. (1994). Gender differences in personality: A meta-analysis. Psychological Bulletin, 116(3), 429–456. https://doi.org/10.1037/0033-2909.116.3.429

    Article  Google Scholar 

  • Fennema, E. (2000). Gender and mathematics: What is known and what do I wish was known? Paper prepared for the Fifth Annual Forum of the National Institute for Science Education, Detroit, Michigan. Retrieved from http://archive.wceruw.org/nise/News_Activities/Forums/Fennemapaper.htm.

  • Fennema, E., Peterson, P. L., Carpenter, T. P., & Lubinski, C. A. (1990). Teachers’ attributions and beliefs about girls, boys, and mathematics. Educational Studies in Mathematics, 21(1), 55–69. https://doi.org/10.1007/BF00311015

    Article  Google Scholar 

  • Fouad, N. A., Hackett, G., Smith, P. L., Kantamneni, N., Fitzpatrick, M., Haag, S., & Spencer, D. (2010). Barriers and supports for continuing in mathematics and science: Gender and educational level differences. Journal of Vocational Behavior, 77(3), 361–373. https://doi.org/10.1016/j.jvb.2010.06.004

    Article  Google Scholar 

  • Freeman, R. B., & Huang, W. (2014). Collaboration: Strength in diversity. Nature, 513, 305. https://doi.org/10.1038/513305a

    Article  Google Scholar 

  • Friedler, Y., & Tamir, P. (1990). Sex differences in science education in Israel: An analysis of 15 years of research. Research in Science and Technological Education, 59, 185–213.

    Google Scholar 

  • Frome, P. M., & Eccles, J. S. (1998). Parents’ influence on children’s achievement-related perceptions. Journal of Personality and Social Psychology, 74(2), 435–452. https://doi.org/10.1037/0022-3514.74.2.435

    Article  Google Scholar 

  • Good, J. J., Woodzicka, J. A., & Wingfield, L. C. (2010). The effects of gender stereotypic and counter-stereotypic textbook images on science performance. Journal of Social Psychology, 150, 132–147. https://doi.org/10.1080/00224540903366552

    Article  Google Scholar 

  • González-Pérez, S., Mateos de Cabo, R., & Sáinz, M. (2020). Girls in STEM: Is it a female role-model thing? Frontiers in Psychology, 11(2204), 1–21. https://doi.org/10.3389/fpsyg.2020.02204

  • Gottfredson, L. S. (2002). Gottfredson’s theory of circumscription, compromise, and self-creation. Career Choice and Development, 4, 85–148.

    Google Scholar 

  • Gottfredson, L. S. (2005). Applying Gottfredson’s theory of circumscription and compromise in career guidance and counselling. In S.D. Brown & R.W. (Eds.). Career development and counselling: putting theory and research to work (pp. 71–100). Wiley and Sons.

    Google Scholar 

  • Graves, J. A. (2014, February 12). The 25 best jobs of 2014: The top occupations to pursue for this year and this decade. U.S. News. Retrieved from http://money.usnews.com/money/careers/slideshows/the-25-bestjobs-of-2014/13.

  • Guiso, L., Monte, F., Sapienza, P., & Zingales, L. (2008). Culture, gender, and math. Science, 320(5880), 1164–1165. https://doi.org/10.1126/science.1154094

    Article  Google Scholar 

  • Gunderson, E., Ramirez, G., Levine, S. C., & Beilock, S. (2012). The role of parents and teachers in the development of gender-related math attitudes. Sex Roles, 66(3), 153–166. https://doi.org/10.1007/s11199-011-9996-2

    Article  Google Scholar 

  • Halim, M. L., & Ruble, D. N. (2010). Gender identity and stereotyping in early and middle childhood. In J. C. Chrisler & D. R. McCreary (Eds.), Handbook of gender research in psychology (pp. 495–525). Springer.

    Chapter  Google Scholar 

  • Hand, S., Rice, L., & Greenlee, E. (2017). Exploring teachers’ and students’ gender role bias and students’ confidence in STEM fields. Social Psychology of Education, 20, 929–945. https://doi.org/10.1007/s11218-017-9408-8

    Article  Google Scholar 

  • Hannover, B., & Kessels, U. (2004). Self-to-prototype matching as a strategy for making academic choices. Why high school students do not like math and science. Learning and Instruction, 14, 51–67. https://doi.org/10.1016/j.learninstruc.2003.10.002

    Article  Google Scholar 

  • Hasni, A., & Potvin, P. (2015). Student’s interest in science and technology and its relationships with teaching methods, family context and self-efficacy. International Journal of Environmental and Science Education, 10(3), 337–366.

    Google Scholar 

  • Heaverlo, C., Cooper, R., & Laanan, F. S. (2013). STEM development: Predictors for 6th-12th grade girls’ interest and confidence in science and math. Journal of Women and Minorities in Science and Engineering, 19(2), 121–142. https://doi.org/10.1615/JWomenMinorScienEng.2013006464

    Article  Google Scholar 

  • Hedges, L. V., & Nowell, A. (1995). Sex differences in mental test scores, variability, and numbers of high-scoring individuals. Science, 269(5220), 41–45. https://doi.org/10.1126/science.7604277

    Article  Google Scholar 

  • Hembree, R. (1988). Correlates, causes, effects, and treatment of test anxiety. Review of Educational Research, 58(1), 47–77.

    Article  Google Scholar 

  • Höffler, T. N., Bonin, V., & Parchmann, I. (2017). Science vs. sports: Motivation and self-concepts of participants in different school competitions. International Journal of Science and Mathematics Education. Advance online publication. https://doi.org/10.1007/s10763-016-9717-y.

  • Hughes, R., & Roberts, K. (2019). The role of STEM self-efficacy on STEM identity for middle school girls after participation in a single-sex informal STEM education program. International Journal of Gender, Science and Technology, 11(2), 286–311.

    Google Scholar 

  • Hunt, P. K., Dong, M., & Miller, C. M. (2021). A multi-year science research or engineering experience in high school gives women confidence to continue in the STEM pipeline or seek advancement in other fields: A 20-year longitudinal study. PLoS ONE, 16(11), e0258717. https://doi.org/10.1371/journal.pone.0258717

    Article  Google Scholar 

  • Hyde, J. S., Fennema, E., & Lamon, S. J. (1990). Gender differences in mathematics performance: A meta-analysis. Psychological Bulletin, 107(2), 139–155. https://doi.org/10.1037/0033-2909.107.2.139

    Article  Google Scholar 

  • Ironsi, C. S. (2020). Impact of test anxiety on test scores of preservice teachers in northern Cyprus. International Journal of Educational Management and Development Studies, 1(2), 19–36.

    Article  Google Scholar 

  • Jansen, M., Schroeders, U., & Lüdtke, O. (2014). Academic self-concept in science: Multidimensionality, relations to achievement measures, and gender differences. Learning and Individual Differences, 30, 11–21. https://doi.org/10.1016/j.lindif.2013.12.003

    Article  Google Scholar 

  • Jiang, F., & McComas, W. F. (2015). The effects of inquiry teaching on student science achievement and attitudes: Evidence from propensity score analysis of PISA data. International Journal of Science Education, 37, 554–576.

    Article  Google Scholar 

  • Jones, B., Ruff, C., & Paretti, M. (2013). The impact of engineering identification and stereotypes on undergraduate women’s achievement and persistence in engineering. Social Psychology of Education, 16, 471–493. https://doi.org/10.1007/s11218-013-9222-x

    Article  Google Scholar 

  • Kang, J., Hense, J., Scheersoi, A., & Keinonen, T. (2019). Gender study on the relationships between science interest and future career perspectives. International Journal of Science Education, 41(1), 80–101. https://doi.org/10.1080/09500693.2018.1534021

    Article  Google Scholar 

  • Kang, J., & Keinonen, T. (2018). The effect of student-centered approaches on students’ interest and achievement in science: Relevant topic-based, open and guided inquiry-based, and discussion-based approaches. Research in Science Education, 48, 865–885. https://doi.org/10.1007/s11165-016-9590-2

    Article  Google Scholar 

  • Kazempour, M., & Sadler, T. D. (2015). Pre-service teachers’ science beliefs, attitudes, and self-efficacy: A multi-case study. Teaching Education, 26(3), 247–271.

    Article  Google Scholar 

  • Kerkhoven, A. H., Russo, P., Land-Zandstra, A. M., Saxena, A., & Rodenburg, F. J. (2016). Gender stereotypes in science education resources: A visual content analysis. PLoS ONE, 11(11), e0165037. https://doi.org/10.1371/journal.pone.0165037

    Article  Google Scholar 

  • Kessels, U. (2005). Fitting into the stereotype: How gender-stereotyped perceptions of prototypic peers relate to liking for school subjects. European Journal of Psychology of Education, 20, 309–323. https://doi.org/10.1007/BF03173559

    Article  Google Scholar 

  • Kessels, U., Rau, M., & Hannover, B. (2006). What goes well with physics? Measuring and altering the image of science. British Journal of Educational Psychology, 76, 761–780. https://doi.org/10.1348/000709905X59961

    Article  Google Scholar 

  • Konrad, A. M., Ritchie, J. E. J., Lieb, P., & Corrigall, E. (2000). Sex differences and similarities in job attribute preferences: A meta-analysis. Psychological Bulletin, 126, 593–641.

    Article  Google Scholar 

  • Lane, K. A., Goh, J. X., & Driver-Linn, E. (2012). Implicit science stereotypes mediate the relationship between gender and academic participation. Sex Roles, 66, 220–234. https://doi.org/10.1007/s11199-011-0036-z

    Article  Google Scholar 

  • Larose, S., Ratelle, C. F., Guay, F., Senécal, C., & Harvey, M. (2006). Trajectories of science self-efficacy beliefs during the college transition and academic and vocational adjustment in science and technology programs. Educational Research and Evaluation, 12, 373–393.

    Article  Google Scholar 

  • Leibham, M. B., Alexander, J. M., & Johnson, K. E. (2013). Science interests in preschool boys and girls: Relations to later self-concept and science achievement. Science Education, 97(4), 574–593. https://doi.org/10.1002/sce.21066

    Article  Google Scholar 

  • Lent, R. W., Brown, S. D., & Hackett, G. (1994). Toward a unifying social cognitive theory of career and academic interest, choice, and performance. Journal of Vocational Behavior, 45(1), 79–122. https://doi.org/10.1006/jvbe.1994.1027

    Article  Google Scholar 

  • Leonard, J., Buss, A., Gamboa, R., Mitchel, M., Fashola, O. S., Hubert, T., & Almughyirah, S. (2016). Using robotics and game design to enhance children’s self-efficacy, STEM attitudes and computational thinking skills. Journal of Science Education and Technology, 25(6), 860–876.

    Article  Google Scholar 

  • Linn, M. C. (1985). Fostering equitable consequences from computer learning environments. Sex Roles, 13, 229–240.

    Article  Google Scholar 

  • Linn, M. C. (1991). Gender differences in educational achievement. In Sex equity in educational opportunity, achievement, and testing: Proceedings of the 1991 ETS Invitational Conference (pp. 11–50). Princeton, NJ: Educational Testing Service.

    Google Scholar 

  • Logan, M. R., & Skamp, K. R. (2013). The impact of teachers and their science teaching on students’ ‘science interest’: A four-year study. International Journal of Science Education, 35(17), 2879–2904. https://doi.org/10.1080/09500693.2012.667167

    Article  Google Scholar 

  • Long, M., Steinke, J., Applegate, B., Knight Lapinski, M., Johnson, M. J., & Ghosh, S. (2010). Portrayals of male and female scientists in television programs popular among middle school-age children. Science Communication, 32, 356–382. https://doi.org/10.1177/1075547009357779

    Article  Google Scholar 

  • Louis, R. A., & Mistele, J. M. (2012). The differences in scores and self-efficacy by student gender in mathematics and science. International Journal of Science and Mathematics Education, 10, 1163–1190 (2012). https://doi.org/10.1007/s10763-011-9325-9.

  • Loverock, B., & Hart, M. M. (2018). What a scientist looks like: Portraying gender in the scientific media. FACETS, 3(1), 754–763. https://doi.org/10.1139/facets-2017-0110

    Article  Google Scholar 

  • Lumpe, A., Czerniak, C., Haney, J., & Beltyukova, S. (2012). Beliefs about teaching science: The relationship between elementary teachers’ participation in professional development and student achievement. International Journal of Science Education, 34(2), 153–166.

    Article  Google Scholar 

  • Lynch, J. (2002). Parents’ self-efficacy beliefs, parents’ gender, children’s reader self-perceptions, reading achievement and gender. Journal of Research in Reading, 25(1), 54–67. https://doi.org/10.1111/1467-9817.00158

    Article  Google Scholar 

  • Maccoby, E. E., & Jacklin, C. N. (1974). The psychology of sex differences. Stanford University Press.

    Book  Google Scholar 

  • Makarova, E., Aeschlimann, B., & Herzog, W. (2019). The gender gap in STEM fields: The impact of the gender stereotype of math and science on secondary students’ career aspirations. Frontiers in Education, 4(60). https://doi.org/10.3389/feduc.2019.00060.

  • Makarova, E., & Herzog, W. (2015). Trapped in the gender stereotype? The image of science among secondary school students and teachers. Equality, Diversity and Inclusion: An International Journal, 34, 106–123. https://doi.org/10.1108/EDI-11-2013-0097

    Article  Google Scholar 

  • Martinez, M. E., & Mead, N. A. (1988). Computer competence. Educational Testing Service.

    Google Scholar 

  • Miller, D. I., Nolla, K. M., Eagly, A. H., & Uttal, D. H. (2018). The development of children’s gender-science stereotypes: A meta-analysis of 5 decades of US draw-a-scientist studies. Child Development, 89, 1943–1955. https://doi.org/10.1111/cdev.13039

    Article  Google Scholar 

  • Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction—what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47, 474–496. https://doi.org/10.1002/tea.20347

    Article  Google Scholar 

  • Moorhouse, E. A. (2017). Sex segregation by field of study and the influence of labor markets: Evidence from 39 countries. International Journal of Comparative Sociology, 58, 3–32.

    Article  Google Scholar 

  • Mullis, I. V. S., Martin, M. O. Foy, P., Kelly, D. L., & Fishbein, B. (2020). TIMSS 2019 International results in mathematics and science. TIMSS & PIRLS International Study Center, Boston College.

    Google Scholar 

  • Nagy, G., Garrett, J., Trautwein, U., Cortina, K. S., Baumert, J., & Eccles, J. S. (2008). Gendered high school course selection as a precursor of gendered careers: the mediating role of self-concept and intrinsic value. In H. M. G. Watt and J. S. Eccles (Eds.), Gender and Occupational Outcomes (pp. 115–143). American Psychological Association. https://doi.org/10.1037/11706-004.

  • Nagy, G., Trautwein, U., Baumert, J., Köller, O., & Garrett, J. (2006).Gender and course selection in upper secondary education: effects of academic self-concept and intrinsic value. Educational Research and Evaluation, 12, 323–345. https://doi.org/10.1080/13803610600765687

  • National Assessment of Educational Progress. (1988). The science report card: Elements of risk and recovery: Trends and achievement based on the 1986 National Assessment. Educational Testing Service.

    Google Scholar 

  • National Science Board. (2018). Science & engineering indicators. Retrieved from https://www.nsf.gov/statistics/2018/nsb20181/.

  • National Science Foundation. (2006). Women, minorities, and persons with disabilities in science and engineering. Retrieved from http://www.nsf.gov/statistics/wmpd/employ.cfm.

  • Nix, S., Perez-Felkner, L., & Thomas, K. (2015). Perceived mathematical ability under challenge: A longitudinal perspective on sex segregation among STEM degree fields. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2015.00530

    Article  Google Scholar 

  • Nosek, B. A., Banaji, M. R., & Greenwald, A. G. (2002). Math= male, me = female, therefore math ≠ me. Journal of Personality and Social Psychology, 83(1), 44–59. https://doi.org/10.1037//0022-3514.83.1.44

    Article  Google Scholar 

  • Nosek, B. A., Smyth, F. L., Sriram, N., Lindner, N. M., Devos, T., Ayala, A., Bar-Anan, Y., Bergh, R., Cai, H., Gonsalkorale, K., Kesebir, S., Maliszewski, N., Neto, F., Olli, E., Park, J., Schnabel, K., Shiomura, K., Tudor Tulbure, B., Wiers, R. W., … Greenwald, A. G. (2009). National differences in gender-science stereotypes predict national sex differences in science and math achievement. Proceedings of the National Academy of Sciences of the United States of America, 106, 10593–10597. https://doi.org/10.1073/pnas.0809921106.

  • OECD (2007). PISA 2006: Science competencies for tomorrow's world. Volume 1: Analysis. OECD.

    Google Scholar 

  • OECD. (2016). PISA 2015 results—Excellence and Equity in Education. OECD Publishing.

    Book  Google Scholar 

  • OECD. (2017). The pursuit of gender equality: An Uphill battle. OECD Publishing. https://doi.org/10.1787/9789264281318-en

    Book  Google Scholar 

  • Ogle, J. P., Hyllegard, K. H., Rambo-Hernandez, K., & Park, J. (2017). Building middle school girls’ self-efficacy, knowledge, and interest in math and science through the integration of fashion and STEM. Journal of Family and Consumer Sciences, 109(4), 33–40.

    Article  Google Scholar 

  • Ost, B. (2010). The role of peers and grades in determining major persistence in the sciences. Economics of Education Review, 29, 923–934. https://doi.org/10.1016/j.econedurev.2010.06.011

    Article  Google Scholar 

  • Page, S. E. (2007). The difference: How the power of diversity creates better groups, firms, schools, and societies. Princeton University Press.

    Google Scholar 

  • Pajares, F. (2005). Gender differences in mathematics self-efficacy beliefs. In A. M. Gallagher & J. C. Kaufman (Eds.), Gender differences in mathematics: An integrative psychological approach (pp. 294–315). Cambridge University Press.

    Google Scholar 

  • Pajares, F., Britner, S., & Valiante, G. (2000). Relation between achievement goals and self-beliefs of middle school students in writing and science. Contemporary Educational Psychology, 25(4), 406–422. https://doi.org/10.1006/ceps.1999.1027

    Article  Google Scholar 

  • Perez-Felkner, L. (2018, November 27). The key to fixing the gender gap in math and science: Boost women's confidence. Retrieved from https://phys.org/news/2018-11-key-gender-gap-mathscience.html.

  • Perez-Felkner, L., Nix, S., & Thomas, K. (2017). Gendered pathways: How mathematics ability beliefs shape secondary and postsecondary course and degree field choices. Frontiers in Psychology, 8(386), 1–11. https://doi.org/10.3389/fpsyg.2017.00386

    Article  Google Scholar 

  • Portnoy, L., & Schrier, K. (2019). Using games to support STEM curiosity, identify, and self-efficacy. The Journal of Games, Society, and Self, 1(1), 66–96.

    Google Scholar 

  • Raabe, I. J., Boda, Z., & Stadtfeld, C. (2019). The social pipeline: How friend influence and peer exposure widen the STEM gender gap. Sociology of Education, 92(2), 105–123. https://doi.org/10.1177/0038040718824095

    Article  Google Scholar 

  • Ramsey, L. R. (2017). Agentic traits are associated with success in science more than communal traits. Personality and Individual Differences, 106, 6–9. https://doi.org/10.1016/j.paid.2016.10.017

    Article  Google Scholar 

  • Ratschinski, G. (2009). Selbstkonzept und Berufswahl. Eine Überprüfung der Berufswahltheorie von Gottfredson an Sekundarschülern [Self-concept and career choice. A review of Gottfredson’s career choice theory among secondary school students]. Münster: Waxmann.

    Google Scholar 

  • Reardon, S. F., Kalogrides, D., Fahle, E. M., Podolsky, A., & Zárate, R. C. (2018). The relationship between test item format and gender achievement gaps on math and ELA tests in 4th and 8th grade. Educational Researcher, 47(5), 284–294.

    Article  Google Scholar 

  • Reilly, D. (2012). Gender, culture and sex-typed cognitive abilities. PLoS ONE, 7(7), e39904. https://doi.org/10.1371/journal.pone.0039904

    Article  Google Scholar 

  • Reilly, D., Neumann, D. L., & Andrews, G. (2019). Investigating gender differences in mathematics and science: Results from the 2011 trends in mathematics and science survey. Research in Science Education, 49(1), 25–50.

    Article  Google Scholar 

  • Renfrow, D. G., & Howard, J. A. (2013). Social psychology of gender and race. In J. DeLamater, & A. Ward (Eds.), Handbook of Social Psychology (pp. 491–531). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-6772-0_17.

  • Rice, L., Barth, J. M., Guadagno, R. E., Smith, G. P. A., & McCallum, D. M. (2013). The role of social support in student’s perceived abilities and attitudes toward math and science. Journal of Youth and Adolescence, 42(7), 1028–1040.

    Article  Google Scholar 

  • Riegle-Crumb, C., Farkas, G., & Muller, C. (2006). The role of gender and friendship in advanced course taking. Sociology of Education, 79, 206–228. https://doi.org/10.1177/003804070607900302

    Article  Google Scholar 

  • Riegle-Crumb, C., Moore, C., & Ramos-Wada, A. (2011). Who wants to have a career in science or math? Exploring adolescents’ future aspirations by gender and race/ethnicity. Science Education, 95(3), 458–476. https://doi.org/10.1002/sce.20431

    Article  Google Scholar 

  • Rittmayer, A.D., & Beier, M.E. (2009). Overview: Self-Efficacy in STEM. SWE-AWE CASEE Overviews. Retrieved from http://www.AWEonline.org.

  • Robnett, R. D., & Leaper, C. (2013). Friendship groups, personal motivation, and gender in relation to high school students’ STEM career interest. Journal of Research on Adolescence, 23, 652–664. https://doi.org/10.1111/jora.12013

    Article  Google Scholar 

  • Robnett, R. D., & Thoman, S. E. (2017). STEM success expectancies and achievement among women in STEM majors. Journal of Applied Developmental Psychology, 52, 91–100. https://doi.org/10.1016/j.appdev.2017.07.003

    Article  Google Scholar 

  • Roche, R., & Manzi, J. (2019). Bridging the confidence gap: Raising self-efficacy amongst urban high school girls through STEM education. American Journal of Biomedical Science and Research, 5(6), 452–454. https://doi.org/10.34297/AJBSR.2019.05.000964.

  • Sadker, D., Sadker, M., & Zittleman, K. R. (2009). Still failing at fairness: How gender bias cheats girls and boys in school and what we can do about it. Simon & Schuster Inc.

    Google Scholar 

  • Sadler, P. M., Sonnert, G., Hazari, Z., & Tai, R. (2012). Stability and volatility of STEM career interest in high school: A gender study. Science Education, 96, 411–427. https://doi.org/10.1002/sce.21007

    Article  Google Scholar 

  • Sahranavard, M., Hassan, S., Elias, H., & Abdullah, M. (2012). Student’s psychological factors and science performance: Does gender matter for Iranian students. Life Science Journal, 9(3), 2069–2075.

    Google Scholar 

  • Sax, L. J., Kanny, M. A., Riggers-Piehl, T. A., Whang, H., & Paulson, L. N. (2015). “But I’m not good at math”: The changing salience of mathematical self-concept in shaping women’s and men’s STEM aspirations. Research in Higher Education, 56, 813–842. https://doi.org/10.1007/s11162-015-9375-x

    Article  Google Scholar 

  • Schillinger, F. L., Mosbacher, J. A., Brunner, C., Vogel, S. E., & Grabner, R. H. (2021). Revisiting the role of worries in explaining the link between test anxiety and test performance. Educational Psychology Review, 33, 1887–1906. https://doi.org/10.1007/s10648-021-09601-0

    Article  Google Scholar 

  • Schmader, T., Johns, M., & Barquissau, M. (2004). The costs of accepting gender differences: The role of stereotype endorsement in women’s experience in the math domain. Sex Roles, 50, 835–850. https://doi.org/10.1023/B:SERS.0000029101.74557.a0

    Article  Google Scholar 

  • Schneider, B., Krajcik, J., Lavonen, J., Salmela-Aro, K., Broda, M., Spicer, J., Bruner, J., Moeller, J., Linnansaari, J., Juuti, K., & Viljaranta, J. (2016). Investigating optimal learning moments in U.S. and Finnish science classes. Journal of Research in Science Teaching, 53, 400–421. https://doi.org/10.1002/tea.21306

    Article  Google Scholar 

  • Sjoberg, S. (1988). Gender and the image of science. Scandinavian Journal of Education Research, 32, 49–60.

    Article  Google Scholar 

  • Smeding, A. (2012). Women in science, technology, engineering, and mathematics (STEM): An investigation of their implicit gender stereotypes and stereotypes’ connectedness to math performance. Sex Roles, 67(11–12), 617–629. https://doi.org/10.1007/s11199-012-0209-4

    Article  Google Scholar 

  • Smyth, F. L., & Nosek, B. A. (2015). On the gender-science stereotypes held by scientists: Explicit accord with gender-ratios, implicit accord with scientific identity. Frontiers in Psychology, 6, 415. https://doi.org/10.3389/fpsyg.2015.00415

    Article  Google Scholar 

  • Sobieraj, S., & Krämer, N. C. (2019). The impacts of gender and subject on experience of competence and autonomy in STEM. Frontiers in Psychology, 10, 1432. https://doi.org/10.3389/fpsyg.2019.01432

    Article  Google Scholar 

  • Spencer, S. J., Steele, C. M., & Quinn, D. M. (1999). Stereotype threat and women’s math performance. Journal of Experimental Social Psychology, 35, 4–28. https://doi.org/10.1006/jesp.1998.1373

    Article  Google Scholar 

  • Steele, C. M. (1997). A threat in the air: How stereotypes shape intellectual identity and performance. American Psychologist, 52, 613–629. https://doi.org/10.1037/0003-066X.52.6.613

    Article  Google Scholar 

  • Steele, J. (2003). Children’s gender stereotypes about math: The role of stereotype stratification. Journal of Applied Social Psychology, 33, 2587–2606. https://doi.org/10.1111/j.1559-1816.2003.tb02782.x

    Article  Google Scholar 

  • Steffens, M. C., & Jelenec, P. (2011). Separating implicit gender stereotypes regarding math and language: Implicit ability stereotypes are self-serving for boys and men, but not for girls and women. Sex Roles, 64(5–6), 324–335. https://doi.org/10.1007/s11199-010-9924-x

    Article  Google Scholar 

  • Steffens, M. C., Jelenec, P., & Noack, P. (2010). On the leaky math pipeline: Comparing implicit math-gender stereotypes and math withdrawal in female and male children and adolescents. Journal of Educational Psychology, 102(4), 947–963. https://doi.org/10.1037/a0019920

    Article  Google Scholar 

  • Steinke, J., & Tavarez, P. M. P. (2018). Cultural representations of gender and STEM: Portrayals of female STEM characters in popular films 2002–2014. International Journal of Gender, Science and Technology, 9, 244–277.

    Google Scholar 

  • Stout, J. G., Dasgupta, N., Hunsinger, M., & McManus, M. A. (2011). STEMing the tide: Using in-group experts to inoculate women’s self-concept in science, technology, engineering, and mathematics (STEM). Journal of Personality and Social Psychology, 100, 255–270. https://doi.org/10.1037/a0021385

    Article  Google Scholar 

  • Stout, J. G., Ito, T. A., Finkelstein, N. D., & Pollock, S. J. (2013). How a gender gap in belonging contributes to the gender gap in physics participation. AIP Conference Proceedings, 1513(1), 402–405.

    Article  Google Scholar 

  • Su, R., & Rounds, J. (2015). All STEM fields are not created equal: People and things interests explain gender disparities across STEM fields. Frontier in Psychology, 6, 189. https://doi.org/10.3389/fpsyg.2015.00189.

  • The Lyda Hill Foundation & The Geena Davis Institute On Gender In Media. (2018). Portray her: Representation of women STEM characters in media. Geena Davis Institute on Gender in Media, The Lyda Hill Foundation.

    Google Scholar 

  • Unger, R. K. (1979). Toward a redefinition of sex and gender. The American Psychologist, 34, 1085–1094. https://doi.org/10.1037/0003-066X.34.11.1085

    Article  Google Scholar 

  • Vygotsky, L. S. (1980). Mind in society: The development of higher psychological processes. Harvard University Press.

    Book  Google Scholar 

  • Walton, G. M., Cohen, G. L., Cwir, D., & Spencer, S. J. (2012). Mere belonging: The power of social connections. Journal of Personality and Social Psychology, 102, 513–532. https://doi.org/10.1037/a0025731

    Article  Google Scholar 

  • Wang, M.-T., Eccles, J. S., & Kenny, S. (2013). Not lack of ability but more choice: Individual and gender differences in choice of careers in science, technology, engineering, and mathematics. Psychological Science, 24(5), 770–775. https://doi.org/10.1177/0956797612458937

    Article  Google Scholar 

  • Wang, J., Oliver, J. S., & Staver, J. R. (2008). Self-concept and science achievement: Investigating a reciprocal relation model across the gender classification in a crosscultural context. Journal of Research in Science Teaching, 45(6), 711–725. https://doi.org/10.1002/tea.20182

    Article  Google Scholar 

  • Weinburgh, M. (1995). Gender difference in student attitudes toward science: A meta-analysis of the literature from 1970 to 1991. Journal of Research in Science Teaching, 32, 387–398.

    Article  Google Scholar 

  • Weinreich-Haste, H. (1981). The image of science. In A. Kelly (Ed.), The missing half: Girls and science education (pp. 216–229). Manchester University Press.

    Google Scholar 

  • Woolley, A. W., Chabris, C. F., Pentland, A., Hashmi, N., & Malone, T. W. (2010). Evidence for a collective intelligence factor in the performance of human groups. Science, 330, 686–688. https://doi.org/10.1126/science.1193147

    Article  Google Scholar 

  • Worell, J. (2001). Encyclopaedia of women and gender: Sex similarities and differences and the impact of society on gender. Academic Press.

    Google Scholar 

  • World Economic Forum. (2017). The Global Gender Gap Report. WEF. Retrieved November 11, 2018, from www.weforum.org/docs/WEF_GGGR_2017.pdf.

  • Zeldin, A. L., Britner, S. L., & Pajares, F. (2008). A comparative study of the self-efficacy beliefs of successful men and women in mathematics, science, and technology careers. Journal of Research in Science Teaching, 45(9), 1036–1058. https://doi.org/10.1002/tea.20195

    Article  Google Scholar 

  • Zeldin, A. L., & Pajares, F. (2000). Against the odds: Self-efficacy beliefs of women in mathematical, scientific, and technological careers. American Educational Research Journal, 37, 215–246.

    Article  Google Scholar 

  • Zimmerman, B. J. (2000). Self-efficacy: An essential motive to learn. Contemporary Educational Psychology, 25, 82–91.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa McMinn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McMinn, M. (2023). ‘Science is a Boys’ Subject’—Changing Perceptions in the Arabian Gulf. In: Dickson, M., McMinn, M., Cairns, D. (eds) Gender in STEM Education in the Arab Gulf Countries. Springer, Singapore. https://doi.org/10.1007/978-981-19-9135-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9135-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9134-9

  • Online ISBN: 978-981-19-9135-6

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics