Skip to main content

Research Progress on Thin Film Transistors Fabricated with Printing Technologies

  • Conference paper
  • First Online:
Innovative Technologies for Printing and Packaging (CACPP 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 991))

Included in the following conference series:

  • 798 Accesses

Abstract

In recent years, with the rise and rapid advancement of printed electronics technology in recent years, the fabrication of large-scale, inexpensive, high-precision transistor devices has gradually moved into the center of attention for transistor research. However, there are still some technical bottlenecks in the process of realising the wide application of printed technology in electronic devices. This paper introduces the composition and main structure of transistors, the characteristics and advantages and disadvantages of different printing processes, as well as the materials commonly used for each structure in the preparation of transistors, and reviews the relevant research progress in recent years, and finally looks forward to the development prospects of the printed method for the preparation of transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chung, S., Cho, K., Lee, T.: Recent progress in inkjet-printed thin‐film transistors. Adv. Sci. 6(6), 1801445 (2019). https://doi.org/10.1002/advs.201801445

  2. Park, J.W., Kang, B.H., Kim, H.J.: A review of low-temperature solution-processed metal oxide thin‐film transistors for flexible electronics. Adv. Funct. Mater. 30(20), 1904632 (2020). https://doi.org/10.1002/adfm.201904632

  3. Fukuda, K., Someya, T.: Recent progress in the development of printed thin-film transistors and circuits with high‐resolution printing technology. Adv. Mater. 29(25), 1602736 (2017). https://doi.org/10.1002/adma.201602736

  4. Zhang, Q., Shao, S., Chen, Z.: High-resolution inkjet-printed oxide thin-film transistors with a self-aligned fine channel bank structure. ACS Appl. Mater. Interfaces 10(18), 15847–15854 (2018). https://doi.org/10.1021/acsami.8b02390

    Article  Google Scholar 

  5. Kim, H., Seo, J., Seong, N.: P-29: Solution-processed single-walled carbon nanotube thin film transistors in-situ patterned by inkjet-printing of surface treatment material. SID Symp. Dig. Tech. Pap. 50(1), 1321–1324 (2019). https://doi.org/10.1002/sdtp.13178

    Article  Google Scholar 

  6. Molina-Lopez, F., Gao, T.Z., Kraft, U.: Inkjet-printed stretchable and low voltage synaptic transistor array. Nat. Commun. 10(1), 1–10 (2019). https://doi.org/10.1038/s41467-019-10569-3

  7. Kwon, J., Takeda, Y., Shiwaku, R.: Three-dimensional monolithic integration in flexible printed organic transistors. Nat. Commun. 10(1), 1 (2019). https://doi.org/10.1038/s41467-018-07904-5

    Article  Google Scholar 

  8. Scuratti, F., Salazar‐Rios, J.M., Luzio, A.: Charge transport in high‐mobility field‐effect transistors based on inkjet printed random networks of polymer wrapped single‐walled carbon nanotubes. Adv. Funct. Mater. 31(5), 2006895 (2021). https://doi.org/10.1002/adfm.202006895

  9. Abdolmaleki, H., Kidmose, P., Agarwala, S.: Droplet‐based techniques for printing of functional inks for flexible physical sensors. Adv. Mater. 33(20), 2006792 (2021). https://doi.org/10.1002/adma.202006792

  10. Lu, S., Cardenas, J.A., Worsley, R.: Flexible, print-in-place 1D–2D thin-film transistors using aerosol jet printing. ACS Nano 13(10), 11263–11272 (2019). https://doi.org/10.1021/acsnano.9b04337

  11. Lu, S., Zheng, J., Cardenas, J.A.: Uniform and stable aerosol jet printing of carbon nanotube thin-film transistors by ink temperature control. ACS Appl. Mater. Interfaces 12(38), 43083–43089 (2020). https://doi.org/10.1021/acsami.0c12046

  12. Zare, B.F., Tang, B., Ma, R.: Sub‐3 V ZnO electrolyte‐gated transistors and circuits with screen‐printed and photo‐crosslinked ion gel gate dielectrics: new routes to improved performance. Adv. Funct. Mater. 30(20), 1902028 (2020). https://doi.org/10.1002/adfm.201902028

  13. Andersson, E.P., Lassnig, R., Strandberg, J.: All-printed large-scale integrated circuits based on organic electrochemical transistors. Nat. Commun. 10(1), 1–9 (2019). https://doi.org/10.1038/s41467-019-13079-4

  14. Zabihipour, M., Lassnig, R., Strandberg, J.: High yield manufacturing of fully screen-printed organic electrochemical transistors. NPJ Flexible Electron. 4(1), 1–8 (2020). https://doi.org/10.1038/s41528-020-0078-9

  15. Torricelli, F., Adrahtas, D.Z., Bao, Z.: Electrolyte-gated transistors for enhanced performance bioelectronics. Nat. Rev. Methods Primers. 1(1), 1–24 (2021). https://doi.org/10.1038/s43586-021-00065-8

  16. Matsui, H., Takeda, Y., Tokito, S.: Flexible and printed organic transistors: from materials to integrated circuits. Org. Electron. 75, 105432 (2019). https://doi.org/10.1016/j.orgel.2019.105432

    Article  Google Scholar 

  17. Kusaka, Y., Shirakawa, N., Ogura, S.: Reverse offset printing of semidried metal acetylacetonate layers and its application to a solution-processed IGZO TFT fabrication. ACS Appl. Mater. Interfaces 10(29), 24339–24343 (2018). https://doi.org/10.1021/acsami.8b07465

    Article  Google Scholar 

  18. Leppäniemi, J., Sneck, A., Kusaka, Y.: Reverse‐offset printing of metal‐nitrate‐based metal oxide semiconductor ink for flexible TFTs. Adv. Electron. Mater. 5(8), 1900272 (2019). https://doi.org/10.1002/aelm.201900272

  19. Sneck, A., Ailas, H., Gao, F.: Reverse-offset printing of polymer resist ink for micrometer-level patterning of metal and metal-oxide layers. ACS Appl. Mater. Interfaces 13(35), 41782–41790 (2021). https://doi.org/10.1021/acsami.1c08126

    Article  Google Scholar 

  20. Wang, L., Zhang, Q., Chang, L.: Electrochemically driven giant resistive switching in perovskite nickelates heterostructures. Adv. Electron. Mater. 3(10), 1700321 (2017). https://doi.org/10.1002/aelm.201700321

  21. Schmatz, B., Lang, A.W., Reynolds, J.R.: Fully printed organic electrochemical transistors from green solvents. Adv. Funct. Mater. 29(44), 1905266 (2019). https://doi.org/10.1002/adfm.201905266

  22. Chandran, A., Joshi, T., Sharma, I.: Monolayer graphene electrodes as alignment layer for ferroelectric liquid crystal devices. J. Mol. Liq. 279, 294–298 (2019). https://doi.org/10.1016/j.molliq.2019.01.140

    Article  Google Scholar 

  23. Naik, A.R., Kim, J.J., Usluer, O.: Direct printing of graphene electrodes for high-performance organic inverters. ACS Appl. Mater. Interfaces 10(18), 15988–15995 (2018). https://doi.org/10.1021/acsami.8b01302

  24. Wan, T., Guan, P., Guan, X.: Facile patterning of silver nanowires with controlled polarities via inkjet-assisted manipulation of interface adhesion. ACS Appl. Mater. Interfaces 12(30), 34086–34094 (2020). https://doi.org/10.1021/acsami.0c07950

    Article  Google Scholar 

  25. Fang, X., Shi, J., Zhang, X.: patterning liquid crystalline organic semiconductors via inkjet printing for high‐performance transistor arrays and circuits. Adv. Funct. Mater. 31(21), 2100237 (2021). https://doi.org/10.1002/adfm.202100237

  26. Shao, B., Liu, Y., Zhuang, X.: Crystallinity and grain boundary control of TIPS-pentacene in organic thin-film transistors for the ultra-high sensitive detection of NO2. J. Mater. Chem. C 7(33), 10196–10202 (2019). https://doi.org/10.1039/c9tc01219b

    Article  Google Scholar 

  27. Hou, S., Yu, J., Zhuang, X.: Phase separation of P3HT/PMMA blend film for forming semiconducting and dielectric layers in organic thin-film transistors for high-sensitivity NO2 detection. ACS Appl. Mater. Interfaces 11(47), 44521–44527 (2019). https://doi.org/10.1021/acsami.9b15651

    Article  Google Scholar 

  28. Sun, Q., Gao, T., Li, X.: Layer‐by‐layer printing strategy for high‐performance flexible electronic devices with low‐temperature catalyzed solution‐processed SiO2. Small Methods 5(8), 2100263 (2021). https://doi.org/10.1002/smtd.202100263

Download references

Acknowledgements

This research is supported by Beijing Natural Science Foundation (No.2202018), General Project of Beijing Municipal Education Commission Science and Technology Program (No. KM202010015004), Research and development of intelligent packaging for cultural relics(Ed202001), Construction and application transformation of cross media cloud platform for printing and packaging anti-counterfeiting and traceability(27170121005), National Natural Science Foundation of China (No.21604005), the general project of fundamental research of BIGC(No.Eb202001), and the general project of science and technology of Beijing Municipal Education Commission (No.KM202110015008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, N. et al. (2023). Research Progress on Thin Film Transistors Fabricated with Printing Technologies. In: Xu, M., Yang, L., Zhang, L., Yan, S. (eds) Innovative Technologies for Printing and Packaging. CACPP 2022. Lecture Notes in Electrical Engineering, vol 991. Springer, Singapore. https://doi.org/10.1007/978-981-19-9024-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9024-3_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9023-6

  • Online ISBN: 978-981-19-9024-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics