Skip to main content

A Fused LBP Texture Descriptor-Based Image Retrieval System

  • Conference paper
  • First Online:
Advances in Signal Processing, Embedded Systems and IoT

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 992))

  • 306 Accesses

Abstract

Texture analysis is critical in a variety of computer vision applications, including object recognition, defect detection on surfaces, pattern recognition, and medical picture analysis. The purpose of this research is to offer a novel method for content-based texture picture classification that is based on the discrete wavelet transformation and several texture properties. Three approaches (LBP, DWT, and Tamura) are combined to build an efficient hybrid function vector capable of extracting the finest texture information. The study extracts LBP and Tamura features in two methods, via wavelet transform and fusion, to create an effective hybrid texture feature vector. Experiments on the Brodatz and MIT-VisTex databases demonstrate that the proposed approach is more precise than a single feature texture algorithm and also than a combination of Tamura texture features and wavelet transform features. Additionally, the technique that employs an SVM classifier achieves a higher level of accuracy, up to 99%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhao R, Grosky WI (2000) From features to semantics: some preliminary results. In: Multimedia and Expo, 2000. ICME 2000. 2000 IEEE international conference on, 2(c), vol 2, pp 679–682

    Google Scholar 

  2. Haralick RM, Shanmuga K, Dinstein (1973) Textural features for image classification. IEEE Trans Syst Man Cyber SMC3:610–621

    Google Scholar 

  3. Tamura H, Mori S, Yamawaki T (1978) Textural feature scor responding to visual perception. IEEE T Syst Man Cyber 8(6):460–472

    Article  Google Scholar 

  4. Smithand JR, Chang S-F (1997) visually searching the web for content. IEEE Multimedia Mag 4(3):12–20. [Columbia U. CU/CTR Technical Report 459-96-25]

    Google Scholar 

  5. Smith JR, Chang SF (1994) Transform features for texture classification and discrimination in large image databases. In: Proceeding IEEE international conference on image proceeding 1994

    Google Scholar 

  6. Thyagarajan KS, Nguyen T, Persons C (1994) A maximum likelihood approach to texture classification using wavelet transform. In: Proceeding IEEE international conference on image proceeding

    Google Scholar 

  7. Manjunath BS, Ma WY (1996) Texture features for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach 18(8):837–842

    Article  Google Scholar 

  8. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation in variant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  9. Huang G, Member S, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification 42(2):513–529

    Google Scholar 

  10. Ricardo A, Joaci J, Sá DM (2017) Neuro computing LBP maps for improving fractal based texture classification 266:1–7

    Google Scholar 

  11. Hemachandran K, Paul A, Singha M (2012) Content-based image retrieval using the combination of the fast wavelet transformation and the colour histogram. IET Image Proc 6(9):1221–1226

    Article  MathSciNet  Google Scholar 

  12. Wang H, Feng L, Zhang J, Liu Y (2016) Semantic discriminative metric learning for image similarity measurement. IEEE Trans Multimedia 18(8):1579–1589

    Article  Google Scholar 

  13. Raghuwanshi G, Tyagi V (2015) Texture image retrieval using adaptive tetrolet transforms. Dig Sig Proc 1(3):1–8

    Google Scholar 

  14. Dhingraa S, Bansalb P (2019) An intelligent multi-resolution and rotational invariant texture descriptor for image retrieval systems. ADCAIJ: Adv Distrib Comput Artif Intell J Regular Issue 8(2):33–49

    Google Scholar 

  15. Naghashi V (2018) Optik co-occurrence of adjacent sparse local ternary patterns: a featured script or for texture and face image retrieval. Optik—Int J Light Electron Optics 157(877–889):2018

    Google Scholar 

  16. Murala S, Maheshwari RP, Bala subramanian R (2012) Local tetra patterns: a new feature descriptor for content-based image retrieval

    Google Scholar 

  17. Fadaei S, Amirfattahi R, Ahmadzadeh MR (2017) Local derivative radial patterns: a new texture descriptor for content-based image retrieval. Sig Proc 137:274–286

    Article  Google Scholar 

  18. Sreena PH, George DS (2013) Content based image retrieval system with fuzzified texture similarity measurement, (ICCC) 80–85

    Google Scholar 

  19. Liao S, Law MWK, Chung ACS (2009) Dominant local binary pattern for texture classification. IEEE Trans Image Proc 18(5):1107–1118

    Article  MathSciNet  MATH  Google Scholar 

  20. Alaei F, Alaei A, Pal U, Blumenstein M (2018) ACPT USCR. Expert systems with applications. https://doi.org/10.1016/j.eswa.2018.12.007

  21. Jain AK, Vailaya A (1995) Image retrieval using color and shape. Pattern Recognition 29(1):233–1244

    Google Scholar 

  22. Kokare M, Biswas PK, Chatterji BN (2005) Complex wavelet filters 35(6):1168–1178 [26]; Pham M (2017) Color texture image retrieval based on local extrema features and riemannian distance

    Google Scholar 

  23. Das R, Dash JK, Mukhopadhyay S (2013) Rotation invariant textural feature extraction for image retrieval using eigen value analysis of intensity gradients and multi-resolution analysis 46:3256–3267

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akbar Khan or Mohammad Hayath Rajvee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khan, A., Rajvee, M.H., Deekshatulu, B.L., Pratap Reddy, L. (2023). A Fused LBP Texture Descriptor-Based Image Retrieval System. In: Chakravarthy, V., Bhateja, V., Flores Fuentes, W., Anguera, J., Vasavi, K.P. (eds) Advances in Signal Processing, Embedded Systems and IoT . Lecture Notes in Electrical Engineering, vol 992. Springer, Singapore. https://doi.org/10.1007/978-981-19-8865-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8865-3_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8864-6

  • Online ISBN: 978-981-19-8865-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics