Skip to main content

Fungal Pectinases: Diversity and Multifarious Applications

  • Chapter
  • First Online:
Fungi and Fungal Products in Human Welfare and Biotechnology

Abstract

Enzymes are considered the backbone of green technology. Enzymes of microbial origin are being exploited in various industrial and environmental processes. They are used to degrade low-value polymers into valuable products or improve industrial processes. Pectin, the substrate of pectinase, is a polysaccharide usually found in the plant cell walls that acts as a cementing substance for binding the microfibrils of cellulose, hemicellulose, and protein. Structurally pectin is a diverse and complex polymer. Therefore, the enzymes involved in its degradation have evolved according to its structure and complexity. They are classified as pectin esterase, polygalacturonase, lyases, and protopectinase based on their mode of action. For industrial applications, they are classified as acidic and alkaline pectinases which find application in various industrial processes including fruit juice, tea, plant fiber retting, cotton fiber bioscouring, plant virus recovery, deinking of recycled paper, processing of pectin industry effluent from fruit juice industries and paper production, and a feed supplement. Due to their diverse nature and applications, various attempts have been made to optimize their production in submerged and solid-state fermentations in order to meet the industrial demand. Fungi are prime producers; therefore, the diversity, production, characterization, and applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Enzymes Market Size & Share Report, 2021–2028. (n.d.). Market Research Reports & Consulting | Grand View Research, Inc. Retrieved January 19, 2022, from https://www.grandviewresearch.com/industry-analysis/enzymes-industry

  2. Sakai T, Sakamoto T et al (1993) Pectin, pectinase and protopectinase: production, properties, and applications. Adv Appl Microbiol 39:213–294

    Article  CAS  PubMed  Google Scholar 

  3. De Vries C, De Jager C et al (1987) Nuclear charge-density-distribution parameters from elastic electron scattering. At Data Nucl Data Tables 36(3):495–536

    Article  Google Scholar 

  4. Whistler RL, Smart CL (1953) Isolation of crystalline D-glucose and cellobiose from an enzymatic Hydrolyzate of Cellulose1. J Am Chem Soc 8:1916–1918

    Article  Google Scholar 

  5. McComb EA, McCready RM (1957) Determination of acetyl in pectin and in acetylated carbohydrate polymers. Anal Chem 5:819–821

    Article  Google Scholar 

  6. Aspinall GO, Craig JWT, Whyte JL (1968) Lemon-peel pectin. Carbohydr Res 4:442–452

    Article  Google Scholar 

  7. Aspinall GO, Gestetner B et al (1968b) Pectic substances from lucerne (Medicago sativa). Part II. Acidic oligosaccharides from partial hydrolysis of leaf and stem pectic acids. Journal of the Chemical Society C: Organic 2554

    Google Scholar 

  8. Aspinall GO, Craig JWT et al (1970) Lemon-peel pectin. Carbohydr Res 4:442–452

    Google Scholar 

  9. Aspinall D, Paleg LG (1981) Proline accumulation: physiological aspects. In: Paleg LG, Aspinall D (eds) The physiology and biochemistry of drought resistance in plants. Academic Press, Sydney, pp 205–241

    Google Scholar 

  10. Lau RR (1985) Two explanations for negativity effects in political behavior. Am J Polit Sci 1:119

    Article  Google Scholar 

  11. Darvill AG, McNeil M, Albersheim P (1978) Structure of plant cell walls. Plant Physiol 3:418–422

    Article  Google Scholar 

  12. Reshmy R, Philip E et al (2021) Nanobiocatalysts: advancements and applications in enzyme technology. Bioresour Technol 337:125491

    Article  CAS  PubMed  Google Scholar 

  13. Díaz AB, Alvarado O, de Ory I, Caro I, Blandino A (2013) Valorization of grape pomace and orange peels: improved production of hydrolytic enzymes for the clarification of orange juice. Food Bioprod Process 91(4):580–586

    Article  Google Scholar 

  14. Deuel H, Stutz E (1958) Pectic substances and pectic enzymes. Adv Enzymol Relat Subj Biochem 20:341–382

    CAS  PubMed  Google Scholar 

  15. Trentini MMS, Toniazzo G et al (2015) Purification of pectinases from aspergillus Niger ATCC 9642 by ethanol precipitation. Biocatal Agric Biotechnol 3:315–320

    Article  Google Scholar 

  16. Kelly CT, Fogarty WM (1978) Production and properties of polygalacturonate lyase by an alkalophilic microorganism bacillus sp. RK9. Can J Microbiol 10:1164–1172

    Article  Google Scholar 

  17. Somerville C, Bauer S et al (2004) Toward a systems approach to understanding plant cell walls. Science 5705:2206–2211

    Article  Google Scholar 

  18. Bacic ILZ, Rossiter DG, Bregt AK (2006) Using spatial information to improve collective understanding of shared environmental problems at watershed level. Landsc Urban Plan 1–2:54–66

    Article  Google Scholar 

  19. Esquivel Bazan E, Garcia Barrios LE et al (1999) Forage legumes: a resource for sustainable agricultural production in Chamula. Chiapas Agrociencia 4:501–507

    Google Scholar 

  20. Loera O, Aguirre J, Viniegra-González G (1999) Pectinase production by a diploid construct from two aspergillus Niger overproducing mutants. Enzym Microb Technol 1–2:103–108

    Article  Google Scholar 

  21. Miller L, Macmillan JD (1970) Mode of action of pectic enzymes II. Further purification of exopolygalacturonate lyase and Pectinesterase from clostridium multifermentans. J Bacteriol 1:72–78

    Article  Google Scholar 

  22. Kent LM, Loo TS, Melton LD et al (2016) Structure and properties of a non-processive, salt-requiring, and acidophilic pectin Methylesterase from aspergillus Niger provide insights into the key determinants of processivity control. J Biol Chem 291(3):1289–1306

    Article  CAS  PubMed  Google Scholar 

  23. Aguilar AF et al (2017) Re-evaluation of pectin (E 440i) and amidated pectin (E 440ii) as food additives. EFSA J 7

    Google Scholar 

  24. Markovič O, Biely P, Mislovičová D (1985) Sensitive detection of endo-1,4-β-glucanases and endo-1,4-β-xylanases in gels. Anal Biochem 1:147–151

    Google Scholar 

  25. Kazemi-Pour N, Condemine G et al (2004) The secretome of the plant pathogenic bacterium Erwinia chrysanthemi. Proteomics 10:3177–3186

    Article  Google Scholar 

  26. Li D, Dong H et al (2021) Pectin in biomedical and drug delivery applications: a review. Int J Biol Macromol:49–65

    Google Scholar 

  27. Wai WW, Alkarkhi AFM, Easa AM (2010) Effect of extraction conditions on yield and degree of esterification of durian rind pectin: an experimental design. Food Bioprod Process 2–3:209–214

    Article  Google Scholar 

  28. Shevchik VE, Hugouvieux-Cotte-Pattat N (1997a) Identification of a bacterial pectin acetyl esterase in Erwinia chrysanthemi 3937. Mol Microbiol 6:1285–1301

    Article  Google Scholar 

  29. Maldonado MC, Strasser de Saad AM (1998) Production of pectinesterase and polygalacturonase by aspergillus Niger in submerged and solid-state systems. J Ind Microbiol Biotechnol 1:34–38

    Article  Google Scholar 

  30. Wood PJ, Siddiqui IR (1971) Determination of methanol and its application to measurement of pectin ester content and pectin methyl esterase activity. Anal Biochem 2:418–428

    Article  Google Scholar 

  31. Bartolome LG, Hoff JE (1972) Firming of potatoes. Biochemical effects of preheating. J Agric Food Chem 2:266–270

    Article  Google Scholar 

  32. Kelman A, Perombelon MCM (1980) Ecology of the soft rot Erwinias. Annu Rev Phytopathol 1:361–387

    Google Scholar 

  33. Collmer A, Keen NT (1986) The role of pectic enzymes in plant pathogenesis. Annu Rev Phytopathol 1:383–409

    Article  Google Scholar 

  34. Vaughan ILH, Jakubczly T et al (1969) Some pink yeasts are associated with softening of olives. Appl Microbiol 18:771–775

    Article  Google Scholar 

  35. Nasuno S, Starr M (1967) Polygalacturonic acid trans-eliminase of Xanthomonas campestris. Biochem J 1:178–185

    Article  Google Scholar 

  36. Dean RA, Timberlake WE (1989) Production of Cell Wall-degrading enzymes by aspergillus nidulans: a model system for fungal pathogenesis of plants. Plant Cell 3:265

    Google Scholar 

  37. Crawford MS, Kolattukudy PE (1987) Pectate lyase from fusarium solani f. sp. pisi: purification, characterization, in vitro translation of the mRNA, and involvement in pathogenicity. Arch Biochem Biophys 1:196–205

    Article  Google Scholar 

  38. Sato M, Kaji A (1980) Exopolygalacturonate lyase produced by streptomyces massasporeus. Agric Biol Chem 4:717–721

    Google Scholar 

  39. Sheiman M, Macmillan I et al (1976) Coordinated action of Pectinesterase and polygalacturonate lyase complex of clostridium multifermentans. Eur J Biochem 2:565–572

    Article  Google Scholar 

  40. Edstrom RD, Phaff HJ (1964) Eliminative cleavage of pectin and of oligogalacturonide methyl esters by pectin trans-Eliminase. J Biol Chem 8:2409–2415

    Article  Google Scholar 

  41. Ishii S, Yokotsuka T (1973) Susceptibility of fruit juice to enzymic clarification by pectin lyase and its relation to pectin in fruit juice. J Agric Food Chem 2:269–272

    Article  Google Scholar 

  42. Satapathy S, Rout JR et al (2020) Biochemical prospects of various microbial pectinase and pectin: an approachable concept in pharmaceutical bioprocessing. Front Nutr 7:117–122

    Article  PubMed  PubMed Central  Google Scholar 

  43. Horikoshi K (1972) Production of alkaline enzymes by alkalophilic microorganisms part III. Agric Biol Chem 2:285–293

    Google Scholar 

  44. Karbassi A, Vaughn RH (1980) Purification and properties of polygalacturonic acid trans-eliminase from Bacillus stearothermophilus. Can J Microbiol 3:377–384

    Article  Google Scholar 

  45. Sakellaris G, Nikolaropoulos S, Evangelopoulos AE (1989) Purification and characterization of an extracellular polygalacturonase from lactobacillus plantarum strain BA 11. J Appl Bacteriol 1:77–85

    Article  Google Scholar 

  46. Singh Dosanjh N, Hoondal GS (1996) Production of constitutive, thermostable, hyper active exo-pectinase from bacillus GK-8. Biotechnol Lett 12:1435–1438

    Article  Google Scholar 

  47. Aguilar G, Huitron C (1990) Constitutive exo-pectinase produced by aspergillus sp. CH-Y-1043 on different carbon source. Biotechnol Lett 9:655–660

    Article  Google Scholar 

  48. Borin MF, Said S, Fonseca MJV (1996) Purification and biochemical characterization of an extracellular Endopolygalacturonase from penicillium frequentans. J Agric Food Chem 6:1616–1620

    Article  Google Scholar 

  49. Solis-Pereyra S, Favela-Torres E et al (1996) Production of pectinases by aspergillus Niger in solid-state fermentation at high initial glucose concentrations. World Journal of Microbiology & Biotechnology 3:257–260

    Article  Google Scholar 

  50. Brühlmann F, Kim K et al (1994) Pectinolytic enzymes from actinomycetes for the degumming of ramie bast fibers. Applied & Environmental Microbiology 60(6):2107–2112

    Article  Google Scholar 

  51. Kavuthodi B, Sebastian D (2018) Review on bacterial production of alkaline pectinase with special emphasis on bacillus species. Bioscience Biotechnology Research Communications 1:18–30

    Article  Google Scholar 

  52. Sakdeellaris G, Nikolaropoulos S, Evangelopoulos AE (1989) Purification and characterization of an extracellular polygalacturonase from lactobacillus plantarum strain BA 11. J Appl Bacteriol 1:77–85

    Article  Google Scholar 

  53. Lonsane BK, Saucedo-Castaneda G et al (1992) Scale-up strategies for solid-state fermentation systems. Process Biochem 5:259–273

    Article  Google Scholar 

  54. Liao C-H, Hung HY, Chatterjee AK (1988) An extracellular pectate lyase is the pathogenicity factor of the soft-rotting bacterium Pseudomonas viridiflava. Mol Plant-Microbe Interact 5:199

    Article  Google Scholar 

  55. Acuna-Arguelles M, Gutierrez-Rojas M et al (1995) Effect of water activity on exo-pectinase production by aspergillus Niger CH4 on solid-state fermentation. Biotechnol Lett 1:23–28

    Google Scholar 

  56. Nair SR, Rakshit SK, Panda T (1995) Effect of carbon sources on the synthesis of pectinase by aspergilli. Bioprocess Eng 13:37–40

    Article  CAS  Google Scholar 

  57. Trejo-Hernfindez MR, Oriol E et al (1991) Production of pectinases by aspergillus Niger by solid fermentation on support. MicolNeotropApl 4:49–62

    Google Scholar 

  58. Debing J, Peijun L et al (2006) Pectinase production by solid fermentation from aspergillus Niger by a new prescription experiment. Ecotoxicol Environ Saf 2:244–250

    Article  Google Scholar 

  59. Koboyashi T, Koike K et al (1999) Purification and properties of a low-molecular weight, high-alkaline pectate lyase from an alkaliphilic strain of bacillus. Bioscience Biotechnology Biochemistry 63:72–75

    Google Scholar 

  60. Friedrich J, Cimerman A, Steiner W (1990) Production of pectolytic enzymes by aspergillus Niger: effect of inoculum size and potassium hexacyanoferrate II-trihydrate. Appl Microbiol Biotechnol 4

    Google Scholar 

  61. Couri S, da Costa TS et al (2000) Hydrolytic enzyme production in solid-state fermentation by aspergillus Niger 3T5B8. Process Biochem 3:255–261

    Article  Google Scholar 

  62. Silva D, Martins E da S, et al. (2002). Pectinase production by penicillium viridicatum RFC3 by solid-state fermentation using agricultural wastes and agro-industrial by-products. Braz J Microbiol 4

    Google Scholar 

  63. Kaur G, Kumar S, Satyanarayana T (2004) Production, characterization and application of a thermostable polygalacturonase of a thermophilic mould Sporotrichum thermophile Apinis. Bioresour Technol 94:239–243

    Article  CAS  PubMed  Google Scholar 

  64. Phutela U, Dhuna V et al (2005) Pectinase and polygalacturonase production by a thermophilic aspergillus fumigatus isolated from decomposting orange peels. Braz J Microbiol 36:63–69

    Article  CAS  Google Scholar 

  65. Patil SR, Dayanand A (2006) Production of pectinase from deseeded sunflower head by aspergillus Niger in submerged and solid-state conditions. Bioresour Technol 16:2054–2058

    Article  Google Scholar 

  66. Palaniyappan M, Vijayagopal V et al (2009) Screening of natural substrates and optimization of operating variables on the production of pectinase by submerged fermentation using aspergillus Niger MTCC 281. Afr J Biotechnol 8:682–686

    CAS  Google Scholar 

  67. Banu AR (2010) Production and characterization of pectinase enzyme from penicillium chrysogenum. Indian J Sci Technol 4:377–381

    Article  Google Scholar 

  68. Mandhania S, Jain V, Malhotra SP (2009) Culture optimization for enhanced production of microbial pectin Methylesterase under submerged conditions. Asian J Biochem 1:12–22

    Article  Google Scholar 

  69. Martin N, Guez MAU et al (2010) Pectinase production by a Brazilian thermophilic fungus Thermomucor indicae-seudaticae N31 in solid-state and submerged fermentation. Microbiology 3:306–313

    Article  Google Scholar 

  70. Patil NP, Chaudhari BL (2010) Production and purification of pectinase by soil isolate penicillium sp. and search for better agro residue for its SSF. Recent Researches in Science &Technology 2:36–34

    CAS  Google Scholar 

  71. Salariato D, Diorio LA et al (2010) Extraction and characterization of polygalacturonase of fomes sclerodermeus produced by solid-state fermentation. Revista Argentina de Microbiologia 42(1):57–62

    CAS  PubMed  Google Scholar 

  72. Gomes J, Zeni J et al (2011) Evaluation of production and characterization of polygalacturonase by aspergillus Niger ATCC 9642. Food Bioprod Process 4:281–287

    Article  Google Scholar 

  73. Demir H, Göğüş N, Tarı C, Heerd D, Lahore MF (2012) Optimization of the process parameters for the utilization of orange peel to produce polygalacturonase by solid-state fermentation from an aspergillus sojae mutant strain. Turk J Biol 36(4):394–404

    CAS  Google Scholar 

  74. Johsnon A, Odunfa S et al (2012) Production of cellulase and Pectinase from Orange peels by fungi. Nature and Science 10:5

    Google Scholar 

  75. Sharma N, Rathore M, Sharma M (2012) Microbial pectinase: sources, characterization and applications. Rev Environ Sci Biotechnol 1:45–60

    Google Scholar 

  76. Singh S, Mandal SK (2012) Optimization of processing parameters for production of pectinolytic enzymes from fermented pineapple residue of mixed aspergillus species. Jordan J Biol Sci 5(4):307–313

    Google Scholar 

  77. Vasanthi, Meenakshisundaram (2012) Optimization of pectinase enzyme production by using sour orange peel as substrate in solid-state fermentation. Asian Journal of Biochemical & Pharmaceutical Research 2:16–26

    CAS  Google Scholar 

  78. El-Batal AI, Osman EM &Shaima IAM1 (2013). Optimization and characterization of polygalacturonase enzyme produced by gamma irradiated penicillium citrinum. Journal of Chemical & Pharmaceutical Research 5:1: 336–347

    Google Scholar 

  79. Seifollah F, Khodaverdi G (2013) Pectinesterase production by aspergillus Niger: optimization of fermentation condition. Journal of Basic & AppliedScientificResearch 3(2):896–910

    Google Scholar 

  80. Siddiqui MA, Veena P, Arif M (2013) Polygalacturonase production from Rhizomucor pusillus isolated from fruit markets of Uttar Pradesh. Afr J Microbiol Res 7:252–259

    CAS  Google Scholar 

  81. Taskin M (2012) Co-production of tannase and pectinase by free and immobilized cells of the yeast Rhodotorula glutinis MP-10 isolated from tannin-rich persimmon (Diospyros kaki L.) fruits. Bioprocess Biosyst Eng 2:165–172

    Google Scholar 

  82. Demir H, Tari C (2014) Valorization of wheat bran for the production of polygalacturonase in SSF of aspergillus sojae. Ind Crop Prod:302–309

    Google Scholar 

  83. Ibrahim D, Weloosamy H, Sheh-Hong L (2014) Potential use of nylon scouring pad cubes attachment method for pectinase production by aspergillus Niger HFD5A-1. Process Biochem 4:660–667

    Article  Google Scholar 

  84. Irshad M, Anwar Z et al (2014) Bio-processing of agro-industrial waste orange peel for induced production of pectinase by Trichoderma viridi; its purification and characterization. Turkish Journal of Biochemistry 1:9–18

    Article  Google Scholar 

  85. Sudeep KC, Upadhyaya J et al (2020) Production, characterization, and industrial application of pectinase enzyme isolated from fungal strains. Fermentation 6(2)

    Google Scholar 

  86. Khatri BP, Bhattarai T et al (2015) Alkaline thermostable pectinase enzyme from aspergillus Niger stain MCAS2 isolated from Manaslu conservation area Gorkha. Nepal Springer Plus 4(1):488

    Article  PubMed  Google Scholar 

  87. Sethi BK, Nanda PK, Sahoo S (2016) Enhanced production of pectinase by aspergillus terreus NCFT 4269.10 using banana peels as substrate. 3 Biotech 6(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  88. El Enshasy HA, Elsayed EA et al (2018) Bioprocess optimization for pectinase production using aspergillus Niger in a submerged cultivation system. BMC Biotechnol 18(1):71

    Article  PubMed  PubMed Central  Google Scholar 

  89. Margo P, Varvaro L, Avanzo C, Balestra GM et al (1994) Pectinolytic enzymes produced by pseudomonas syringae pv. Glycinea. FEMS Microbiol Lett. 117:1–6

    Article  Google Scholar 

  90. Demir N, Nadaroglu H et al (2011) Purification and characterization of a pectin lyase produced by Geobacillus stearothermophilus Ah22 and its application in fruit juice production. Ann Microbiol 4:939–946

    Article  Google Scholar 

  91. Ros JM, Schols HA et al (1996) Extraction, characterisation, and enzymatic degradation of lemon peel pectins. Carbohydr Res 2:271–284

    Article  Google Scholar 

  92. Pandey A, Selvakumar P, Soccol CR, Singh Nee Nigam P (1999) Solid-state fermentation for the production of industrial enzymes. Curr Sci 77(1):149–162

    CAS  Google Scholar 

  93. Lonsane, Ghildyal (1992) Exoenzymes. In: Doell H, Mitchell D, Rolty C (eds) Solid-state cultivation. Elsevier. p. Chapter 11

    Google Scholar 

  94. Oriol E, Raimbault M et al (1988) Water and water activity in the solid-state fermentation of cassava starch by aspergillus Niger. Appl Microbiol Biotechnol 5–6:498–503

    Article  Google Scholar 

  95. Roussos S, Olmos A et al (1991) Strategies for large scale inoculum development for solid-state fermentation system: conidiospores of Trichoderma harzianum. Biotechnol Tech 6:415–420

    Article  Google Scholar 

  96. Gessesse A, Mamo G (1999) High-level xylanase production by an alkaliphilic bacillus sp. by using solid-state fermentation. Enzym Microb Technol 1–2:68–72

    Article  Google Scholar 

  97. Pandey A, Nigam P et al (2000) Advances in microbial amylases. Biotechnol Appl Biochem 2:135

    Article  Google Scholar 

  98. Cavalitto SF, Areas JA et al (1996) Pectinase production profile of aspergillus foetidus in solid-state cultures at different acidities. Biotechnol Lett 3

    Google Scholar 

  99. Fonseca MJV, Said S (1994) The pectinase produced by Tubercularia vulgaris in submerged culture using pectin or orange-pulp pellets as inducer. Appl Microbiol Biotechnol 1:32–35

    Article  Google Scholar 

  100. Ismail AMS (1996) Utilization of orange peels for the production of multienzyme complexes by some fungal strains. Process Biochem 7:645–650

    Article  Google Scholar 

  101. Santier PH, Minjares A et al (1993) New approach for selecting pectinase producing mutants of aspergillus Niger well adapted to solid-state fermentation. Biotechnol Adv 3:429–440

    Article  Google Scholar 

  102. Li T, Wang N et al (2007) Optimization of covalent immobilization of pectinase on sodium alginate support. Biotechnol Lett 9:1413–1416

    Article  Google Scholar 

  103. Acuña-Argüelles ME, Gutiérrez-Rojas M et al (1995) Production and properties of three pectinolytic activities produced by aspergillus Niger in submerged and solid-state fermentation. Appl Microbiol Biotechnol 5:808–814

    Article  Google Scholar 

  104. Pandey A (1992) Recent process developments in solid-state fermentation. Process Biochem 27:109–117

    Article  CAS  Google Scholar 

  105. Acuna-Arguelles M, Gutierrez-Rojas M et al (1994) Effect of water activity on exo-pectinase production by aspergillus Niger CH4 on solid-state fermentation. Biotechnol Lett 1:23–28

    Article  Google Scholar 

  106. Shi C, He J et al (2015) Solid-state fermentation of rapeseed cake with aspergillus Niger for degrading glucosinolates and upgrading nutritional value. Journal of Animal Science and Biotechnology 1

    Google Scholar 

  107. Heikinheimo R (1995) Characterization of a novel pectate lyase from Erwinia carotovora subsp. carotovora. Mol Plant-Microbe Interact 2:207

    Article  Google Scholar 

  108. Pitkänen K, Heikinheimo et al (1992) Purification and characterization of Erwinia chrysanthemi B374 pectin methylesterase produced by Bacillus subtilis. Enzym Microb Technol 10:832–836

    Article  Google Scholar 

  109. Hatada Y, Kobayashi T, Ito S (2001) Enzymatic properties of the highly thermophilic and alkaline pectate lyase pel-4B from alkaliphilic bacillus sp. strain P-4-N and the entire nucleotide and amino acid sequences. Extremophiles 2:127–133

    Article  Google Scholar 

  110. Koboyashi T, Higaki N et al (2001) Purification and properties of a galacturonic acid releasing exopolygalacturonase from a strain of bacillus. BioscienceBiotechnolBiochem 65:842–847

    Google Scholar 

  111. Kuchenreuther JM, Stapleton JA, Swartz JR (2009) Tyrosine, cysteine, and S-adenosyl methionine stimulate in vitro [Fe-Fe] hydrogenase activation. PLoS One 4(10):e7565

    Article  PubMed  PubMed Central  Google Scholar 

  112. Satyanarayana T., Vohra, & Ashima (2003). Phytases: microbial sources, production, purification, and potential biotechnological applications. Crit Rev Biotechnol 1: 29–60

    Google Scholar 

  113. Guo W, González-Candelas L, Kolattukudy PE (1995) Cloning of a new pectate lyase gene pelC from fusarium solani f. sp. pisi (Nectriahaematococca, mating type VI) and characterization of the gene product expressed in Pichia pastoris. Arch Biochem Biophys 2:352–360

    Article  Google Scholar 

  114. Hasunuma T, Fukusaki EI, Kobayashi A (2003) Methanol production is enhanced by expression of an aspergillus Niger pectin methylesterase in tobacco cells. J Biotechnol 106:45–52

    Article  CAS  PubMed  Google Scholar 

  115. Margo P, Varvaro L et al (1994) Avanzo C, Balestra GM. Pectinolytic enzymes produced by pseudomonas syringae pv. Glycinea FEMS Microbiol Lett 117:1–6

    Article  Google Scholar 

  116. Takao M, Nakaniwa T, Yoshikawa K (2000) Purification and characterization of thermostable pectate lyase with protopectinase activity from thermophilic bacillus sp. TS 47. BiosciBiotechnolBiochem. 64:2360–2367

    CAS  Google Scholar 

  117. Singh SA, Rao AGA (2002) A simple fractionation protocol for, and a comprehensive study of the molecular properties of two major endo polygalacturonases from aspergillus Niger. Biotechnol Appl Biochem 35:115–123

    Article  CAS  PubMed  Google Scholar 

  118. Favey S, Bourson C et al (1992) Purification of the acidic pectate lyase of Erwinia chrysanthemi 3937 and sequence analysis of the corresponding gene. J Gen Microbiol 138:499–508

    Article  CAS  PubMed  Google Scholar 

  119. Nagai M, Katsuragi T et al (2000) Purification and characterization of an endo-polygalacturonase from aspergillus awamori. BiosciBiotechnolBiochem. 64:1729–1732

    CAS  Google Scholar 

  120. Koboyashi T, Koike K, Yoshimatsu T, Higaki N, Suzumatsu A, Ozawa T et al (1999) Purification and properties of a low-molecular weight, high-alkaline pectate lyase from an alkaliphilic strain of bacillus. BiosciBiotechnolBiochem 63:72–75

    Google Scholar 

  121. Singh SA, Plattner H, Diekmann H (1999) Exo polygalacturonate lyase from a thermophilic bacillus sp. Enzyme Microbial Technol. 25:420–425

    Article  CAS  Google Scholar 

  122. Takao M, Nakaniwa T et al (2001) Molecular cloning, DNA sequence, and expression of the gene encoding for thermostable pectate lyase of thermophilic bacillus sp. TS 47. BiosciBiotechnolBiochem 65:322–329

    CAS  Google Scholar 

  123. Blanco P, Sieiro C, Villa TG (1999) Production of pectic enzymes in yeasts. FEMS Microbiol Lett 175:1–9

    Article  CAS  PubMed  Google Scholar 

  124. Pietro AD, Roncero MIG (1996) Purification and characterization of an exo-polygalacturonase from the tomato vascular wilt pathogen fusarium oxysporum f. sp. lycopersici. FEMS Microbiol Lett 145:295–298

    Article  PubMed  Google Scholar 

  125. Corredig M, Kerr W, Wicker L (2000) Separation of thermostable pectin-methylesterase from marsh grapefruit pulp. J Agric Food Chem 48:4918–4923

    Article  CAS  PubMed  Google Scholar 

  126. Barnby FM, Morpeth FF, Pyle DL (1990) Endopolygalacturonase production from Kluyveromyces marxianus. I. Resolution, purification and partial characterization of the enzyme. Enzyme Microbial Technol 12:891–897

    Article  CAS  Google Scholar 

  127. Daniel IU, Chukwunonso AN et al (2014) Extraction, partial purification and characterization of pectinases isolated from aspergillus species cultured on mango (Mangifera indica) peels. Afr J Biotechnol 13:2445–2454

    Article  Google Scholar 

  128. Alana A, Alkorta I et al (1990) Pectin lyase activity in a penicillium italicum strain. Appl Environ Microbiol 56:3755–3759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dinnella C, Lanzarini G, Stagni A (1994) Immobilization of an endopectin lyase on g-alumina: study of factors influencing the biocatalytic matrix stability. J Chem Technol Biotechnol 59:237–241

    Article  CAS  Google Scholar 

  130. Sapunova LI, Mikhailova RV, Lobanok AG (1995) Properties of pectin lyase preparations from the genus penicillium. Appl Microbiol Biochem 31:435–438

    Google Scholar 

  131. Bruhlmann F (1995) Production and characterization of an extracellular pectate lyase from an Amycolata sp. Appl Environ Microbiol 61:3580–3585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chen W-C, Hsieh H-J, Tseng T-C (1998) Purification and characterization of a pectin lyase from Pythium splendens infected cucumber fruits. Botanical Bull Academia Sinica 39:181–186

    Google Scholar 

  133. Moharib SA, El-Sayed ST, Jwanny EW (2000) Evaluation of enzymes produced from yeast. Nahrung 44:47–51

    Article  CAS  PubMed  Google Scholar 

  134. Dixit VS, Kumar AR et al (2004) Low molecular mass pectate lyase from fusarium moniliforme: similar modes of chemical and thermal denaturation. BiochemBiophys Res Commun 315:477–484

    Article  CAS  Google Scholar 

  135. Dutta AC (1980) The tissue. Oxford University Press, London, pp 183–194

    Google Scholar 

  136. Bajpai P (1999) Application of enzymes in the pulp and paper industry. Biotechnol Prog 2:147–157

    Article  Google Scholar 

  137. Deshpande KS, Gurucharanam K (1985) Degumming of ramie fibers: role of cell wall degrading enzymes of aspergillus versicolor. Indian journal of botany Hyderabad 1:79–81

    Google Scholar 

  138. Baracat-Pereira MC, DantasVanetti MC et al (1993) Partial characterization of aspergillus fumigatus polygalacturonases for the degumming of natural fibers. J Ind Microbiol 3:139–142

    Article  Google Scholar 

  139. Chesson A (1980) A review: maceration in relation to the post-harvest handling and processing of plant material. J Appl Bacteriol 1:1–45

    Article  Google Scholar 

  140. Sharma HSS, Robinson E (1983) Fungal colonization during glyphosate induced desiccation and dew-retting of flax cultivars. Technical Report No. 2281:11

    Google Scholar 

  141. Ward OP, Fogarty WM (1974) Polygalacturonate lyase production by Bacillus subtilis and flavobacterium pectinovorum. Appl Microbiol 2:346–350

    Article  Google Scholar 

  142. Chesson A (1978) The maceration of linen flax under anaerobic conditions. J Appl Bacteriol 2:219–230

    Article  Google Scholar 

  143. Rosemberg JA, De França FP (1967) Importance of galacturonic acid in controlling the retting of flax. Appl Microbiol 3:484–486

    Article  Google Scholar 

  144. Ahmad M (1963) Studies on jute retting bacteria. J Appl Bacteriol 2:117–126

    Article  Google Scholar 

  145. Jayasankar NP, Agate AD et al (1967) Microbial decomposition of pectic substances. V. Evidence for the role of micrococcus species in the retting of sisal and coconut husks. Journal of the Indian Institute of Science 49:10–17

    CAS  Google Scholar 

  146. Cao J, Zheng L, Chen S (1992) Screening of pectinase producer from alkalophilic bacteria and study on its potential application in degumming of ramie. Enzym Microb Technol 12:1013–1016

    Article  Google Scholar 

  147. Tanabe H, Kobayashi Y et al (1986) Pretreatment of pectic wastewater from orange canning by soft-rot Erwinia carotovora. J Ferment Technol 3:265–268

    Article  Google Scholar 

  148. Tanabe H, Yoshihara K et al (1987) Pretreatment of pectic wastewater from orange canning process by an alkalophilic bacillus sp. J Ferment Technol 2:243–246. -7

    Google Scholar 

  149. Horikoshi K (1990) Enzymes of Alkalophiles. In Microbial Enzymes and Biotechnology Springer, Netherlands, pp 275–294

    Google Scholar 

  150. Reid I, Ricard M (2000) Pectinase in papermaking: solving retention problems in mechanical pulps bleached with hydrogen peroxide. Enzym Microb Technol 2–4:115–123

    Article  Google Scholar 

  151. Horn D, Linhart F (1996) Retention aids. In Paper Chemistry Springer, Netherlands, pp 64–82

    Google Scholar 

  152. Thornton J, Ekman R et al (1994) Polysaccharides dissolved from Norway spruce in thermomechanical pulping and peroxide bleaching. J Wood Chem Technol 2:159–175

    Article  Google Scholar 

  153. Carr JG, Wood BJB (eds) (1997) Microbiology of fermented foods. Springer, US, pp 133–154

    Google Scholar 

  154. Godfrey A (1998) Production of industrial enzymes and some applications in fermented foods. In: Microbiology of fermented foods. Springer, US, pp 622–657

    Chapter  Google Scholar 

  155. Paul NB, Bhattacharyya SK (1979) 47—the microbial degumming of raw ramie fiber. The journal of the textile Institute 12:512–517

    Article  Google Scholar 

  156. Hellinger E (1954) Sporulating anaerobes on english flax. J Appl Bacteriol 1:6–13

    Article  Google Scholar 

  157. Anuja V, Gupta R (2017) Pectinases and their biotechnological applications. In: Microbial enzyme Technology in Food Applications. CRC Press, pp 145–161

    Google Scholar 

  158. Renuka V et al (2009) Statistical optimization of substrate, carbon and nitrogen source by response surface methodology for pectinase production using aspergillus fumigatus MTCC 870 in submerged fermentation. Afr J Biotechnol 22:6355–6363

    Google Scholar 

  159. Teixeira MFS, Lima Filho JL, Durán N (2000) Carbon sources effect on pectinase production from aspergillus japonicus 586. Braz J Microbiol 4

    Google Scholar 

  160. Rombouts FM, Pilnik W, Rose AH (1980) Pectic enzymes. In: Economic microbiology, Microbial enzymes and bioconversions, vol 5. Academic Press, pp 227–282

    Google Scholar 

  161. Godfry T (1996) Introduction to enzymology, 2nd edn. Elsevier, pp 1–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, D.C., Mishra, A.K., Mishra, K.K. (2023). Fungal Pectinases: Diversity and Multifarious Applications. In: Satyanarayana, T., Deshmukh, S.K. (eds) Fungi and Fungal Products in Human Welfare and Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-19-8853-0_15

Download citation

Publish with us

Policies and ethics