Skip to main content

The Systemic Effects of Ovarian Aging

  • Chapter
  • First Online:
Ovarian Aging

Abstract

Ovarian aging characterizes menopausal syndrome, which is a dynamic decline in ovarian function and hormone secretion, causing physical and mental symptoms. The menopausal syndrome presentation depends on race, climate, genetics, nutrition, weight, height, birth, and other factors. The average age at which a woman enters perimenopause is 40 years, lasting an average of 4 years but up to 10 years. The root cause of the menopausal syndrome is a decline in ovarian endocrine function, especially estrogen concentration. Primordial follicle depletion accelerates and periodic follicle recruitment and the estrogen concentration decrease starting around the age of 37.5 years. Further, the hypothalamic-pituitary-ovarian (HPO) axis feedback regulation induces an increase in follicle-stimulating hormone (FSH) and a decrease in anti-Müllerian hormone (AMH) and the antral follicle count (AFC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. te Velde ER, Pearson PL. The variability of female reproductive ageing. Hum Reprod Update. 2002;8(2):141–54.

    Article  Google Scholar 

  2. Abma JC, et al. Fertility, family planning, and women’s health: new data from the 1995 National Survey of family growth. Vital Health Stat. 1997;23(19):1–114.

    Google Scholar 

  3. American College of, O., P. Gynecologists Committee on Gynecologic, and C. Practice. Female age-related fertility decline. Committee opinion no. 589. Fertil Steril. 2014;101(3):633–4.

    Article  Google Scholar 

  4. Flood-Nichols SK, et al. Vitamin D deficiency in early pregnancy. PLoS One. 2015;10(4):e0123763.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Franasiak JM, Lara EE, Pellicer A. Vitamin D in human reproduction. Curr Opin Obstet Gynecol. 2017;29(4):189–94.

    Article  PubMed  Google Scholar 

  6. Meczekalski B, et al. Fertility in women of late reproductive age: the role of serum anti-mullerian hormone (AMH) levels in its assessment. J Endocrinol Investig. 2016;39(11):1259–65.

    Article  CAS  Google Scholar 

  7. Cohen MA, et al. Reproductive outcome after sterilization reversal in women of advanced reproductive age. J Assist Reprod Genet. 1999;16(8):402–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Freeman EW, et al. Anti-mullerian hormone as a predictor of time to menopause in late reproductive age women. J Clin Endocrinol Metab. 2012;97(5):1673–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tehrani FR, et al. Predicting age at menopause from serum antimullerian hormone concentration. Menopause. 2011;18(7):766–70.

    Article  PubMed  Google Scholar 

  10. Broer SL, et al. Anti-mullerian hormone predicts menopause: a long-term follow-up study in normoovulatory women. J Clin Endocrinol Metab. 2011;96(8):2532–9.

    Article  CAS  PubMed  Google Scholar 

  11. Du X, et al. Age-specific Normal reference range for serum anti-mullerian hormone in healthy Chinese Han women: a nationwide population-based study. Reprod Sci. 2016;23(8):1019–27.

    Article  CAS  PubMed  Google Scholar 

  12. Cui Y, et al. Age-specific serum antimullerian hormone levels in women with and without polycystic ovary syndrome. Fertil Steril. 2014;102(1):230–236 e2.

    Article  CAS  PubMed  Google Scholar 

  13. Sowers MR, et al. Anti-mullerian hormone and inhibin B in the definition of ovarian aging and the menopause transition. J Clin Endocrinol Metab. 2008;93(9):3478–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hurwitz JM, Santoro N. Inhibins, activins, and follistatin in the aging female and male. Semin Reprod Med. 2004;22(3):209–17.

    Article  CAS  PubMed  Google Scholar 

  15. Reame NE, et al. Differential effects of aging on activin a and its binding protein, follistatin, across the menopause transition. Fertil Steril. 2007;88(4):1003–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Santoro N, Adel T, Skurnick JH. Decreased inhibin tone and increased activin a secretion characterize reproductive aging in women. Fertil Steril. 1999;71(4):658–62.

    Article  CAS  PubMed  Google Scholar 

  17. Klein NA, et al. Ovarian follicular concentrations of activin, follistatin, inhibin, insulin-like growth factor I (IGF-I), IGF-II, IGF-binding protein-2 (IGFBP-2), IGFBP-3, and vascular endothelial growth factor in spontaneous menstrual cycles of normal women of advanced reproductive age. J Clin Endocrinol Metab. 2000;85(12):4520–5.

    CAS  PubMed  Google Scholar 

  18. Al-Edani T, et al. Female aging alters expression of human cumulus cells genes that are essential for oocyte quality. Biomed Res Int. 2014;2014:964614.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li J, et al. Human umbilical cord mesenchymal stem cells improve the reserve function of perimenopausal ovary via a paracrine mechanism. Stem Cell Res Ther. 2017;8(1):55.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Taketani T, et al. Effects of growth hormone and insulin-like growth factor 1 on progesterone production in human luteinized granulosa cells. Fertil Steril. 2008;90(3):744–8.

    Article  CAS  PubMed  Google Scholar 

  21. Sluczanowska-Glabowska S, et al. Morphology of ovaries in laron dwarf mice, with low circulating plasma levels of insulin-like growth factor-1 (IGF-1), and in bovine GH-transgenic mice, with high circulating plasma levels of IGF-1. J Ovarian Res. 2012;5:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Klein NA, et al. Ovarian follicular development and the follicular fluid hormones and growth factors in normal women of advanced reproductive age. J Clin Endocrinol Metab. 1996;81(5):1946–51.

    CAS  PubMed  Google Scholar 

  23. Kaczmarek M, et al. A microsatellite polymorphism in IGF1 gene promoter and timing of natural menopause in Caucasian women. Int J Med Sci. 2015;12(1):32–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. He C, et al. A large-scale candidate gene association study of age at menarche and age at natural menopause. Hum Genet. 2010;128(5):515–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carlock CI, et al. Unique temporal and spatial expression patterns of IL-33 in ovaries during ovulation and estrous cycle are associated with ovarian tissue homeostasis. J Immunol. 2014;193(1):161–9.

    Article  CAS  PubMed  Google Scholar 

  26. Wu J, et al. IL-33 is required for disposal of unnecessary cells during ovarian atresia through regulation of autophagy and macrophage migration. J Immunol. 2015;194(5):2140–7.

    Article  CAS  PubMed  Google Scholar 

  27. Hurwitz JM, et al. Reproductive aging is associated with altered gene expression in human luteinized granulosa cells. Reprod Sci. 2010;17(1):56–67.

    Article  CAS  PubMed  Google Scholar 

  28. Broekmans FJ, Soules MR, Fauser BC. Ovarian aging: mechanisms and clinical consequences. Endocr Rev. 2009;30(5):465–93.

    Article  CAS  PubMed  Google Scholar 

  29. Treloar AE, et al. Variation of the human menstrual cycle through reproductive life. Int J Fertil. 1967;12(1 Pt 2):77–126.

    CAS  PubMed  Google Scholar 

  30. Harlow SD, et al. Executive summary of the stages of reproductive aging workshop + 10: addressing the unfinished agenda of staging reproductive aging. J Clin Endocrinol Metab. 2012;97(4):1159–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. He Zhong LS, Rong C, et al. Menstrual cyclicity change in ovarian aging. Med J PUMCH. 2016;7(2):81–7.

    Google Scholar 

  32. Randolph JF Jr, et al. Masturbation frequency and sexual function domains are associated with serum reproductive hormone levels across the menopausal transition. J Clin Endocrinol Metab. 2015;100(1):258–66.

    Article  CAS  PubMed  Google Scholar 

  33. Dennerstein L, et al. Sexual function, dysfunction, and sexual distress in a prospective, population-based sample of mid-aged, Australian-born women. J Sex Med. 2008;5(10):2291–9.

    Article  PubMed  Google Scholar 

  34. Thomas HN, et al. Changes in sexual function among midlife women: “I’m older... And I’m wiser”. Menopause. 2018;25(3):286–92.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gracia CR, et al. Hormones and sexuality during transition to menopause. Obstet Gynecol. 2007;109(4):831–40.

    Article  CAS  PubMed  Google Scholar 

  36. Etgen AM. 46 - Estrogen regulation of neurotransmitter and growth factor Signaling in the brain. In: Pfaff DW, Arnold AP, Fahrbach SE, et al., editors. Hormones, brain and behavior. San Diego: Academic Press; 2002. p. 381-XX.

    Google Scholar 

  37. Cersosimo M, Benarroch E. Estrogen actions in the nervous system: complexity and clinical implications. Neurology. 2015:85.

    Google Scholar 

  38. Saito K, Cui H. Emerging roles of Estrogen-related receptors in the brain: potential interactions with Estrogen Signaling. Int J Mol Sci. 2018:19.

    Google Scholar 

  39. Cao P, Feng F, Dong G, et al. Estrogen receptor α enhances the transcriptional activity of ETS-1 and promotes the proliferation, migration and invasion of neuroblastoma cell in a ligand dependent manner. BMC Cancer. 2015;15:491.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang Y, Tao Y, Hyman ME, et al. Osteoporosis in China. Osteoporos Int. 2009;20(10):1651–62.

    Article  CAS  PubMed  Google Scholar 

  41. Hernlund E, Svedbom A, Ivergård M, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the international osteoporosis foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2013;8:136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liying HE, Yun SUN, Wenjuan YAO, et al. The prevalence rate of osteoporosis in the elderly in China between 2010 and 2016: a meta-analysis of single rate. Chin J Osteoporos. 2016;22(12):1590–6.

    Google Scholar 

  43. Khosla S, Amin S, Orwoll E. Osteoporosis in men. Endocr Rev. 2008;29(4):441–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oursler MJ, Osdoby P, Pyfferoen J, et al. Avian osteoclasts as estrogen target cells. Proc Natl Acad Sci U S A. 1991;88(15):6613–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mödder UI, Roforth MM, Hoey K, et al. Effects of estrogen on osteoprogenitor cells and cytokines/bone-regulatory factors in postmenopausal women. Bone. 2011;49(2):202–7.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xiong Q, Tang P, Gao Y, et al. Proteomic analysis of Estrogen-mediated signal transduction in osteoclasts formation. Biomed Res Int. 2015;2015:596789.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kousteni S, Han L, Chen JR, et al. Kinase-mediated regulation of common transcription factors accounts for the bone-protective effects of sex steroids. J Clin Invest. 2003;111(11):1651–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Almeida M, Han L, Martin-Millan M, et al. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem. 2007;282(37):27285–97.

    Article  CAS  PubMed  Google Scholar 

  49. Sowers MR, Zheng H, Jannausch ML, et al. Amount of bone loss in relation to time around the final menstrual period and follicle-stimulating hormone staging of the transmenopause. J Clin Endocrinol Metab. 2010;95(5):2155–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sowers MR, Finkelstein JS, Ettinger B, et al. The association of endogenous hormone concentrations and bone mineral density measures in pre- and perimenopausal women of four ethnic groups: SWAN. Osteoporos Int. 2003;14(1):44–52.

    Article  CAS  PubMed  Google Scholar 

  51. Sowers MR, Jannausch M, McConnell D, et al. Hormone predictors of bone mineral density changes during the menopausal transition. J Clin Endocrinol Metab. 2006;91(4):1261–7.

    Article  CAS  PubMed  Google Scholar 

  52. Devleta B, Adem B, Senada S. Hypergonadotropic amenorrhea and bone density: new approach to an old problem. J Bone Miner Metab. 2004;22(4):360–4.

    Article  PubMed  Google Scholar 

  53. Sowers MR, Greendale GA, Bondarenko I, et al. Endogenous hormones and bone turnover markers in pre- and perimenopausal women: SWAN. Osteoporos Int. 2003;14(3):191–7.

    Article  CAS  PubMed  Google Scholar 

  54. Wu XY, Wu XP, Xie H, et al. Age-related changes in biochemical markers of bone turnover and gonadotropin levels and their relationship among Chinese adult women. Osteoporos Int. 2010;21(2):275–85.

    Article  PubMed  Google Scholar 

  55. Cheung E, Tsang S, Bow C, et al. Bone loss during menopausal transition among southern Chinese women. Maturitas. 2011;69(1):50–6.

    Article  PubMed  Google Scholar 

  56. Sun L, Peng Y, Sharrow AC, et al. FSH directly regulates bone mass. Cell. 2006;125(2):247–60.

    Article  CAS  PubMed  Google Scholar 

  57. Gertz ER, Silverman NE, Wise KS, et al. Contribution of serum inflammatory markers to changes in bone mineral content and density in postmenopausal women: a 1-year investigation. J Clin Densitom. 2010;13(3):277–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ji Y, Liu P, Yuen T, et al. Epitope-specific monoclonal antibodies to FSHβ increase bone mass. Proc Natl Acad Sci U S A. 2018;115(9):2192–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang B, Song Y, Chen Y, et al. Correlation analysis for follicle-stimulating hormone and C-terminal cross-linked telopetides of type i collagen in menopausal transition women with osteoporosis. Int J Clin Exp Med. 2015;8(2):2417–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kupperman H, Blatt MH, Wiesbader H, et al. Comparative clinical evaluation of estrogenic preparations by the menopausal and amenorrheal indices. J Clin Endocrinol Metab. 1953;13(6):688–703.

    Article  CAS  PubMed  Google Scholar 

  61. Greene JG. A factor analytic study of climacteric symptoms. J Psychosom Res. 1976;20(5):425–30.

    Article  CAS  PubMed  Google Scholar 

  62. Terauchi M, Odai T, Hirose A, et al. Muscle and joint pains in middle-aged women are associated with insomnia and low grip strength: a cross-sectional study. J Psychosom Obstet Gynaecol. 2018;11(6):1–7.

    Google Scholar 

  63. Greising SM, Baltgalvis KA, Lowe DA, et al. Hormone therapy and skeletal muscle strength: a meta-analysis. J Gerontol A Biol Sci Med Sci. 2009;64(10):1071–81.

    Article  PubMed  Google Scholar 

  64. Maltais ML, Desroches J, Dionne IJ. Changes in muscle mass and strength after menopause. J Musculoskelet Neuronal Interact. 2009;9(4):186–97.

    CAS  PubMed  Google Scholar 

  65. Nagai S, Ikeda K, Horie-Inoue K, et al. Estrogen signaling increases nuclear receptor subfamily 4 group a member 1 expression and energy production in skeletal muscle cells. Endocr J. 2018;65(12):1209–18.

    Article  CAS  PubMed  Google Scholar 

  66. Doria E, Buonocore D, Focarelli A, et al. Relationship between human aging muscle and oxidative system pathway. Oxidative Med Cell Longev. 2012;2012:830257.

    Article  Google Scholar 

  67. Hansen M, Kjaer M. Influence of sex and estrogen on musculotendinous protein turnover at rest and after exercise. Exerc Sport SciRev. 2014;42(4):183–92.

    Article  Google Scholar 

  68. Deutz NE, Bauer JM, Barazzoni R, et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN expert group. Clin Nutr. 2014;33(6):929–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rizzoli R, Stevenson JC, Bauer JM, et al. The role of dietary protein and vitamin D in maintaining musculoskeletal health in postmenopausal women: a consensus statement from the European Society for Clinical and Economic Aspects of osteoporosis and osteoarthritis (ESCEO). Maturitas. 2014;79(1):122–32.

    Article  CAS  PubMed  Google Scholar 

  70. Syed ASA, Lee PY, Awi I, et al. The menopausal experience among indigenous women of Sarawak. Malaysia Climacteric. 2009;12(6):548–56.

    Article  Google Scholar 

  71. Losina E, Weinstein AM, Reichmann WM, et al. Lifetime risk and age at diagnosis of symptomatic knee osteoarthritis in the US. Arthritis Care Res (Hoboken). 2013;65(5):703–11.

    Article  PubMed  Google Scholar 

  72. Adachi N, Nawata K, Maeta M, et al. Relationship of the menstrual cycle phase to anterior cruciate ligament injuries in teenaged female athletes. Arch Orthop Trauma Surg. 2008;128(5):473–8.

    Article  PubMed  Google Scholar 

  73. Deie M, Sakamaki Y, Sumen Y, et al. Anterior knee laxity in young women varies with their menstrual cycle. Int Orthop. 2002;26(3):154–6.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Appelman Y, van Rijn BB, Ten Haaf ME, Boersma E, Peters SA. Sex differences in cardiovascular risk factors and disease prevention. Atherosclerosis. 2015;241(1):211–8.

    Article  CAS  PubMed  Google Scholar 

  75. Xie J, Wu EQ, Zheng ZJ, Sullivan PW, Zhan L, Labarthe DR. Patient-reported health status in coronary heart disease in the United States: age, sex, racial, and ethnic differences. Circulation. 2008;118(5):491–7.

    Article  PubMed  Google Scholar 

  76. Kannel WB, Hjortland MC, McNamara PM, Gordon T. Menopause and risk of cardiovascular disease the Framingham study. Ann Intern Med. 1976;85(4):447–52.

    Article  CAS  PubMed  Google Scholar 

  77. Bairey Merz CN, Pepine CJ, Walsh MN, Fleg JL. Ischemia and no obstructive coronary artery disease (INOCA): developing evidence-based therapies and research agenda for the next decade. Circulation. 2017;135(11):1075–92.

    Article  PubMed  Google Scholar 

  78. Tostes RC, Nigro D, Fortes ZB, Carvalho MH. Effects of estrogen on the vascular system. Braz J Med Biol Res. 2003;36(9):1143–58.

    Article  CAS  PubMed  Google Scholar 

  79. Prossnitz ER, Maggiolini M. Mechanisms of estrogen signaling and gene expression via GPR30. Mol Cell Endocrinol. 2009;308(1–2):32–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mendelsohn ME, Karas RH. Molecular and cellular basis of cardiovascular gender differences. Science. 2005;308(5782):1583–7.

    Article  CAS  PubMed  Google Scholar 

  81. Scott PA, T. A, Brochu M, St-Louis J. Vasorelaxant action of 17 -estradiol in rat uterine arteries: role of nitric oxide synthases and estrogen receptors. Am J Physiol Heart Circ Physiol. 2007;293(6):H3713–9.

    Article  CAS  PubMed  Google Scholar 

  82. Ueda K, Karas RH. Emerging evidence of the importance of rapid, non-nuclear estrogen receptor signaling in the cardiovascular system. Steroids. 2013;78(6):589–96.

    Article  CAS  PubMed  Google Scholar 

  83. Trenti A, Tedesco S, Boscaro C, Trevisi L, Bolego C, Cignarella A. Estrogen, angiogenesis, immunity and cell metabolism: solving the puzzle. Int J Mol Sci. 2018;19(3)

    Google Scholar 

  84. Nanao-Hamai M, Son BK, Hashizume T, Ogawa S, Akishita M. Protective effects of estrogen against vascular calcification via estrogen receptor α-dependent growth arrest-specific gene 6 transactivation. Biochem Biophys Res Commun. 2016;480(3):429–35.

    Article  CAS  PubMed  Google Scholar 

  85. Manson JE, Allison MA, Rossouw JE, Carr JJ, Langer RD, Hsia J, Kuller LH, Cochrane BB, Hunt JR, Ludlam SE, Pettinger MB, Gass M, Margolis KL, Nathan L, Ockene JK, Prentice RL, Robbins J, Stefanick ML, WHI and WHI-CACS Investigators. Estrogen therapy and coronary-artery calcification. N Engl J Med. 2007;356(25):2591–602.

    Article  CAS  PubMed  Google Scholar 

  86. Stice JP, Chen L, Kim SC, Jung JS, Tran AL, Liu TT, Knowlton AA. 17β-Estradiol, aging, inflammation, and the stress response in the female heart. Endocrinology. 2011;152(4):1589–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Donaldson C, E. S, Baker C, Aronovitz MJ, Weiss AD, Hall-Porter M, Wang F, Ackerman A, Karas RH, Molkentin JD, Patten RD. Estrogen attenuates left ventricular and cardiomyocyte hypertrophy by an estrogen receptor-dependent pathway that increases calcineurin degradation. Circ Res. 2009;104(2):265–75. 11p following 275

    Article  CAS  PubMed  Google Scholar 

  88. Patten RD, P. I, Aronovitz MJ, Baur J, Celestin F, Chen X, Michael A, Haq S, Nuedling S, Grohe C, Force T, Mendelsohn ME, Karas RH. 17beta-estradiol reduces cardiomyocyte apoptosis in vivo and in vitro via activation of phospho-inositide-3 kinase/Akt signaling. Circ Res. 2004;95(7):692–9.

    Article  CAS  PubMed  Google Scholar 

  89. Duft K, S. M, Pham H, Abdelwahab A, Schriever C, Kararigas G, Dworatzek E, Davidson MM, Regitz-Zagrosek V, Morano I, Mahmoodzadeh S. 17β-Estradiol-induced interaction of estrogen receptor α and human atrial essential myosin light chain modulates cardiac contractile function. Basic Res Cardiol. 2017;112(1):1.

    Article  CAS  PubMed  Google Scholar 

  90. dos Santos RL, da Silva FB, Ribeiro RF Jr, Stefanon I. Sex hormones in the cardiovascular system. Horm Mol Biol Clin Investig. 2014;18(2):89–103.

    PubMed  Google Scholar 

  91. Sievers C, Klotsche J, Pieper L, Schneider HJ, März W, Wittchen HU, Stalla GK, Mantzoros C. Low testosterone levels predict all-cause mortality and cardiovascular events in women: a prospective cohort study in German primary care patients. Eur J Endocrinol. 2010;163(4):699–708.

    Article  CAS  PubMed  Google Scholar 

  92. Scarabin-Carre V, et al. High level of plasma estradiol as a new predictor of ischemic arterial disease in older postmenopausal women: the three-city cohort study. J Am Heart Assoc. 2012;1(3):e001388.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Laughlin GA, Goodell V, Barrett-Connor E. Extremes of endogenous testosterone are associated with increased risk of incident coronary events in older women. J Clin Endocrinol Metab. 2010;95(2):740–7.

    Article  CAS  PubMed  Google Scholar 

  94. Jimenez MC, Sun Q, Schurks M, Chiuve S, Hu FB, Manson JE, Rexrode KM. Low dehydroepiandrosterone sulfate is associated with increased risk of ischemic stroke among women. Stroke. 2013;44(7):1784–9.

    Article  CAS  PubMed  Google Scholar 

  95. Glisic M, Rojas LZ, Asllanaj E, Vargas KG, Kavousi M, Ikram MA, Fauser B, Laven J, Muka T, Franco OH. Sex steroids, sex hormone-binding globulin and levels of N-terminal pro-brain natriuretic peptide in postmenopausal women. Int J Cardiol. 2018;261:189–95.

    Article  PubMed  Google Scholar 

  96. Ying W, Zhao D, Ouyang P, Subramanya V, Vaidya D, Ndumele CE, Sharma K, Shah SJ, Heckbert SR, Lima JA, de Filippi CR, Budoff MJ, Post WS, Michos ED. Sex hormones and change in N-terminal pro-B-type natriuretic peptide levels: the multi-ethnic study of atherosclerosis. J Clin Endocrinol Metab. 2018;103(11):4304–14.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Stanczyk FZ, Hapgood JP, Winer S, Mishell DR Jr. Progestogens used in postmenopausal hormone therapy: differences in their pharmacological properties, intracellular actions, and clinical effects. Endocr Rev. 2013;34(2):171–208.

    Article  CAS  PubMed  Google Scholar 

  98. Bleil ME, Gregorich SE, McConnell D, Rosen MP, Cedars MI. Does accelerated reproductive aging underlie premenopausal risk for cardiovascular disease? Menopause. 2013;20(11):1139–46.

    Article  PubMed  PubMed Central  Google Scholar 

  99. de Kat AC, Verschuren WM, Eijkemans MJ, Broekmans FJ, van der Schouw YT. Anti-mullerian hormone trajectories are associated with cardiovascular disease in women: results from the Doetinchem cohort study. Circulation. 2017;135(6):556–65.

    Article  PubMed  Google Scholar 

  100. de Kat AC, Verschuren WMM, Eijkemans MJ, van der Schouw YT, Broekmans FJ. The association of low ovarian reserve with cardiovascular disease risk: a cross-sectional population-based study. Hum Reprod. 2016;31(8):1866–74.

    Article  PubMed  Google Scholar 

  101. Park HT, Cho GJ, Ahn KH, Shin JH, Kim YT, Hur JY, Kim SH, Lee KW, Kim T. Association of insulin resistance with anti-mullerian hormone levels in women without polycystic ovary syndrome (PCOS). Clin Endocrinol. 2010;72(1):26–31.

    Article  CAS  Google Scholar 

  102. Tehrani FR, Erfani H, Cheraghi L, Tohidi M, Azizi F. Lipid profiles and ovarian reserve status: a longitudinal study. Hum Reprod. 2014;29(11):2522–9.

    Article  CAS  PubMed  Google Scholar 

  103. van Dorp W, Blijdorp K, Laven JS, Pieters R, Visser JA, van der Lely AJ, van der Lely AJ, Neggers SJ, van den Heuvel-Eibrink MM. Decreased ovarian function is associated with obesity in very long-term female survivors of childhood cancer. Eur J Endocrinol. 2013;168(6):905–12.

    Article  PubMed  Google Scholar 

  104. Verit FF, Akyol H, Sakar MN. Low antimullerian hormone levels may be associated with cardiovascular risk markers in women with diminished ovarian reserve. Gynecol Endocrinol. 2016;32(4):302–5.

    Article  CAS  PubMed  Google Scholar 

  105. Daan NM, Muka T, Koster MP, Roeters van Lennep J, Lambalk C, Laven J, Fauser C, Meun C, de Rijke YB, Boersma E, Franco OH, Kavousi M, Fauser B. Cardiovascular risk in women with premature ovarian insufficiency compared to pre-menopausal women at middle age. J Clin Endocrinol Metab. 2016;101(9):3306–15.

    Google Scholar 

  106. Roeters van Lennep JE, Heida KY, Bots ML, Hoek A, collaborators of the Dutch Multidisciplinary Guideline Development Group on Cardiovascular Risk Management after Reproductive Disorders. Cardiovascular disease risk in women with premature ovarian insufficiency: a systematic review and meta-analysis. Eur J Prev Cardiol. 2016;23(2):178–86.

    Article  PubMed  Google Scholar 

  107. Hamoda H. The British menopause society and Women’s health concern recommendations on the management of women with premature ovarian insufficiency. Post. Reprod Health. 2017;23(1):22–35.

    Google Scholar 

  108. Lokkegaard E, Jovanovic Z, Heitmann BL, Keiding N, Ottesen B, Pedersen AT. The association between early menopause and risk of ischaemic heart disease: influence of hormone therapy. Maturitas. 2006;53(2):226–33.

    Article  CAS  PubMed  Google Scholar 

  109. Rivera CM, Grossardt B, Rhodes DJ, Brown RD Jr, Roger VL, Melton LJ 3rd, Rocca WA. Increased cardiovascular mortality after early bilateral oophorectomy. Menopause. 2009;16(1):15–23.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Sullivan SD, Sarrel PM, Nelson LM. Hormone replacement therapy in young women with primary ovarian insufficiency and early menopause. Fertil Steril. 2016;106(7):1588–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Berkova M, Berka Z, Krcova Z. Turner syndrome is associated with increased cardiovascular morbidity and mortality. Vnitr Lek. 2009;55(5):523–8.

    CAS  PubMed  Google Scholar 

  112. Bondy CA. Congenital cardiovascular disease in turner syndrome. Congenit Heart Dis. 2008;3(1):2–15.

    Article  PubMed  Google Scholar 

  113. Swerdlow AJ, Hermon C, Jacobs PA, Alberman E, Beral V, Daker M, Fordyce A, Youings S. Mortality and cancer incidence in persons with numerical sex chromosome abnormalities: a cohort study. Ann Hum Genet. 2001;65(2):177–88.

    Article  CAS  PubMed  Google Scholar 

  114. Dulac Y, Pienkowski C, Abadir S, Tauber M, Acar P. Cardiovascular abnormalities in Turner’s syndrome: what prevention? Arch Cardiovasc Dis. 2008;101(7–8):485–90.

    Article  PubMed  Google Scholar 

  115. Ostberg JE, Storry C, Donald AE, Attar MJ, Halcox JP, Conway GS. A dose-response study of hormone replacement in young hypogonadal women: effects on intima media thickness and metabolism. Clin Endocrinol. 2007;66(4):557–64.

    CAS  Google Scholar 

  116. Ossewaarde ME, Bots ML, Verbeek A, Petters P, van der Graaf Y, Grobbee D, van der Schouw Y. Age at menopause,cause-specific mortality and total life expectancy. Epidemiology. 2005;16(4):556–62.

    Article  PubMed  Google Scholar 

  117. Muka T, Oliver-Williams C, Kunutsor S, Laven J, Fauser B, Chowdhury R, Kavousi M, Franco O. Association of age at onset of menopause and time since onset of menopause with cardiovascular outcomes, intermediate vascular traits, and all-cause mortality: a systematic review and meta-analysis. JAMA Cardiol. 2016;1(7):767–76.

    Article  PubMed  Google Scholar 

  118. Yang L, Lin L, Kartsonaki C, Guo Y, Chen Y, Bian Z, Xie K, Jin D, Li L, Lv J, Chen Z, China Kadoorie Biobank Study Collaborative Group. Menopause characteristics, total reproductive years, and risk of cardiovascular disease among Chinese women. Circ Cardiovasc Qual Outcomes. 2017;10(11):e004235.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Xie X. Beihua Kong and Tao duan, obstetrics and Gynecology. 9th ed. People’s Medical Publishing House; 2018.

    Google Scholar 

  120. Mannella P, et al. The female pelvic floor through midlife and aging. Maturitas. 2013;76(3):230–4.

    Article  PubMed  Google Scholar 

  121. Liu C, Zhu L, Lang J. Research progress in the epidemiology of female urinary incontinence and related factors. Chinese J Obstetr Gynecol. 2007;042(002):142–4.

    Google Scholar 

  122. Simon JA, et al. The role of androgens in the treatment of genitourinary syndrome of menopause (GSM): International Society for the Study of Women’s sexual health (ISSWSH) expert consensus panel review. Menopause. 2018;25(7):837–47.

    Article  PubMed  Google Scholar 

  123. Liu D’e. Physiological and pathological changes in women during perimenopause. Chinese J Pract Gynecol Obstetr. 2004;20(8):473–4.

    Google Scholar 

  124. Portman DJ, Gass ML. Vulvovaginal atrophy terminology consensus conference, genitourinary syndrome of menopause: new terminology for vulvovaginal atrophy from the International Society for the Study of Women’s sexual health and the North American Menopause Society. Menopause. 2014;21(10):1063–8.

    Article  PubMed  Google Scholar 

  125. Grigoriadis C, et al. Effect of gonadal steroid receptors alterations on the pathophysiology of pelvic organ prolapse and urinary incontinence. Minerva Ginecol. 2016;68(1):37–42.

    PubMed  Google Scholar 

  126. Ewies AA, Thompson J, Al-Azzawi F. Changes in gonadal steroid receptors in the cardinal ligaments of prolapsed uteri: immunohistomorphometric data. Hum Reprod. 2004;19(7):1622–8.

    Article  CAS  PubMed  Google Scholar 

  127. Feng Y. Hormone replacement therapy for urogenital symptoms in perimenopausal women. China Maternal and Child Health. 2011;26(34):5378–80.

    Google Scholar 

  128. Traish AM, et al. Role of androgens in female genitourinary tissue structure and function: implications in the genitourinary syndrome of menopause. Sex Med Rev. 2018;6(4):558–71.

    Article  PubMed  Google Scholar 

  129. Monteleone P, et al. Symptoms of menopause - global prevalence, physiology and implications. Nat Rev Endocrinol. 2018;14(4):199–215.

    Article  PubMed  Google Scholar 

  130. Kinman CL, et al. The relationship between age and pelvic organ prolapse bother. Int Urogynecol J. 2017;28(5):751–5.

    Article  PubMed  Google Scholar 

  131. Yulan M, et al. Progress in evaluating ovarian aging indicators. Chinese Journal of Clinical Physicians. 2011;5(16):4835–7.

    Google Scholar 

  132. Allen E, Doisy EA. Landmark article Sept 8, 1923. An ovarian hormone. Preliminary report on its localization, extraction and partial purification, and action in test animals. By Edgar Allen and Edward a. Doisy. JAMA. 1983;250(19):2681–3.

    Article  CAS  PubMed  Google Scholar 

  133. Wilkinson HN, Hardman MJ. The role of estrogen in cutaneous ageing and repair. Maturitas. 2017;103:60–4.

    Article  CAS  PubMed  Google Scholar 

  134. Archer DF. Postmenopausal skin and estrogen. Gynecol Endocrinol. 2012;28(Suppl 2):2–6.

    Article  CAS  PubMed  Google Scholar 

  135. Emmerson E, Hardman MJ. The role of estrogen deficiency in skin ageing and wound healing. Biogerontology. 2012;13(1):3–20.

    Article  CAS  PubMed  Google Scholar 

  136. Blume-Peytavi U, et al. Age-associated skin conditions and diseases: current perspectives and future options. Gerontologist. 2016;56(Suppl 2):S230–42.

    Article  PubMed  Google Scholar 

  137. Quan T, et al. Ultraviolet irradiation induces CYR61/CCN1, a mediator of collagen homeostasis, through activation of transcription factor AP-1 in human skin fibroblasts. J Invest Dermatol. 2010;130(6):1697–706.

    Article  CAS  PubMed  Google Scholar 

  138. Ressler S, et al. p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell. 2006;5(5):379–89.

    Article  CAS  PubMed  Google Scholar 

  139. Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res. 2009;37(5):1528–42.

    Article  CAS  PubMed  Google Scholar 

  140. Komosinska-Vassev K, et al. Age- and gender-dependent changes in connective tissue remodeling: physiological differences in circulating MMP-3, MMP-10, TIMP-1 and TIMP-2 level. Gerontology. 2011;57(1):44–52.

    Article  CAS  PubMed  Google Scholar 

  141. Haenggi W, et al. Microscopic findings of the nail-fold capillaries--dependence on menopausal status and hormone replacement therapy. Maturitas. 1995;22(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  142. Chambers ES, Vukmanovic-Stejic M. Skin barrier immunity and ageing. Immunology. 2020;160(2):116–25.

    Article  CAS  PubMed  Google Scholar 

  143. Nelson LR, Bulun SE. Estrogen production and action. J Am Acad Dermatol. 2001;45(3 Suppl):S116–24.

    Article  CAS  PubMed  Google Scholar 

  144. Seleit I, et al. Intrinsic versus extrinsic aging: a histopathological, morphometric and immunohistochemical study of Estrogen receptor beta and Androgen receptor. Skin Pharmacol Physiol. 2016;29(4):178–89.

    Article  CAS  PubMed  Google Scholar 

  145. Toz E, et al. Potential adverse effects of prophylactic bilateral salpingo-oophorectomy on skin aging in premenopausal women undergoing hysterectomy for benign conditions. Menopause. 2016;23(2):138–42.

    Article  PubMed  Google Scholar 

  146. Tsukahara K, et al. Ovariectomy is sufficient to accelerate spontaneous skin ageing and to stimulate ultraviolet irradiation-induced photoageing of murine skin. Br J Dermatol. 2004;151(5):984–94.

    Article  CAS  PubMed  Google Scholar 

  147. Thornton MJ. Estrogens and aging skin. Dermatoendocrinol. 2013;5(2):264–70.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Affinito P, et al. Effects of postmenopausal hypoestrogenism on skin collagen. Maturitas. 1999;33(3):239–47.

    Article  CAS  PubMed  Google Scholar 

  149. Brincat M, et al. A study of the decrease of skin collagen content, skin thickness, and bone mass in the postmenopausal woman. Obstet Gynecol. 1987;70(6):840–5.

    CAS  PubMed  Google Scholar 

  150. Son ED, et al. Topical application of 17beta-estradiol increases extracellular matrix protein synthesis by stimulating tgf-Beta signaling in aged human skin in vivo. J Invest Dermatol. 2005;124(6):1149–61.

    Article  CAS  PubMed  Google Scholar 

  151. Brincat M, et al. Skin collagen changes in postmenopausal women receiving different regimens of estrogen therapy. Obstet Gynecol. 1987;70(1):123–7.

    CAS  PubMed  Google Scholar 

  152. Varila E, et al. The effect of topical oestradiol on skin collagen of postmenopausal women. Br J Obstet Gynaecol. 1995;102(12):985–9.

    Article  CAS  PubMed  Google Scholar 

  153. Shah MG, Maibach HI. Estrogen and skin. An overview Am J Clin Dermatol. 2001;2(3):143–50.

    Article  CAS  PubMed  Google Scholar 

  154. Henry F, et al. Age-related changes in facial skin contours and rheology. J Am Geriatr Soc. 1997;45(2):220–2.

    Article  CAS  PubMed  Google Scholar 

  155. Wolff EF, Narayan D, Taylor HS. Long-term effects of hormone therapy on skin rigidity and wrinkles. Fertil Steril. 2005;84(2):285–8.

    Article  CAS  PubMed  Google Scholar 

  156. Grosman N, Hvidberg E, Schou J. The effect of oestrogenic treatment on the acid mucopolysaccharide pattern in skin of mice. Acta Pharmacol Toxicol (Copenh). 1971;30(5):458–64.

    CAS  PubMed  Google Scholar 

  157. Callens A, et al. Does hormonal skin aging exist? A study of the influence of different hormone therapy regimens on the skin of postmenopausal women using non-invasive measurement techniques. Dermatology. 1996;193(4):289–94.

    Article  CAS  PubMed  Google Scholar 

  158. Dunn LB, et al. Does estrogen prevent skin aging? Results from the first National Health and nutrition examination survey (NHANES I). Arch Dermatol. 1997;133(3):339–42.

    Article  CAS  PubMed  Google Scholar 

  159. Hardman MJ, Ashcroft GS. Estrogen, not intrinsic aging, is the major regulator of delayed human wound healing in the elderly. Genome Biol. 2008;9(5):R80.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Ashcroft GS, et al. Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am J Pathol. 1999;155(4):1137–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ashcroft GS, et al. Estrogen modulates cutaneous wound healing by downregulating macrophage migration inhibitory factor. J Clin Invest. 2003;111(9):1309–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hardman MJ, et al. Macrophage migration inhibitory factor: a central regulator of wound healing. Am J Pathol. 2005;167(6):1561–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ashcroft GS, et al. Estrogen accelerates cutaneous wound healing associated with an increase in TGF-beta1 levels. Nat Med. 1997;3(11):1209–15.

    Article  CAS  PubMed  Google Scholar 

  164. Stevenson S, Sharpe DT, Thornton MJ. Effects of oestrogen agonists on human dermal fibroblasts in an in vitro wounding assay. Exp Dermatol. 2009;18(11):988–90.

    Article  CAS  PubMed  Google Scholar 

  165. Ashcroft GS, et al. Age-related differences in the temporal and spatial regulation of matrix metalloproteinases (MMPs) in normal skin and acute cutaneous wounds of healthy humans. Cell Tissue Res. 1997;290(3):581–91.

    Article  CAS  PubMed  Google Scholar 

  166. Ilhan ZE, Łaniewski P, Thomas N, Roe DJ, Chase DM, Herbst-Kralovetz MM. Deciphering the complex interplay between microbiota, HPV, inflammation and cancer through cervicovaginal metabolic profiling. EBioMedicine. 2019;44:675–90.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Muhleisen AL, Herbst-Kralovetz MM. Menopause and the vaginal microbiome. Maturitas. 2016;91:42–50.

    Article  PubMed  Google Scholar 

  168. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, SL MC, Karlebach S, Gorle R, Russell J, Tacket CO, Brotman RM, Davis CC, Ault K, Peralta L, Forney LJ. Vaginal microbiome of reproductive age women. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4680–7.

    Article  CAS  PubMed  Google Scholar 

  169. Gajer P, Brotman RM, Bai G, Sakamoto J, Schütte UM, Zhong X, Koenig SS, Fu L, Ma ZS, Zhou X, Abdo Z, Forney LJ, Ravel J. Temporal dynamics of the human vaginal microbiota. Sci Transl Med. 2012;4(132):132–52.

    Article  Google Scholar 

  170. Chaban B, Links MG, Jayaprakash TP, Wagner EC, Bourque DK, Lohn Z, Albert AY, van Schalkwyk J, Reid G, Hemmingsen SM, Hill JE, Money DM. Characterization of the vaginal microbiota of healthy Canadian women through the menstrual cycle. Microbiome. 2014;2(23):1–12.

    Google Scholar 

  171. Bradley F, Birse K, Hasselrot K, Noël-Romas L, Introini A, Wefer H, Seifert M, Engstrand L, Tjernlund A, Broliden K, Burgener AD. The vaginal microbiome amplifies sex hormone-associated cyclic changes in cervicovaginal inflammation and epithelial barrier disruption. Am J Reprod Immunol. 2018;80(1):e12863.

    Article  PubMed  Google Scholar 

  172. Hummelen R, Macklaim JM, Bisanz JE, Hammond JA, McMillan A, Vongsa R, Koenig D, Gloor GB, Reid G. Vaginal microbiome and epithelial gene array in post-menopausal women with moderate to severe dryness. PLoS One. 2011;6(11):e26602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gliniewicz K, Schneider GM, Ridenhour BJ, Williams CJ, Song Y, Farage MA, Miller K, Forney LJ. Comparison of the vaginal microbiomes of premenopausal and postmenopausal women. Front Microbiol. 2019;10:193.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Ravel J, Brotman RM. Translating the vaginal microbiome: gaps and challenges. Genome Med. 2016;8(1):35.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Nie P, Li Z, Wang Y, Zhang Y, Zhao M, Luo J, Du S, Deng Z, Chen J, Wang Y, Chen S, Wang L. Gut microbiome interventions in human health and diseases. Med Res Rev. 2019;39(6):2286–313.

    Article  PubMed  Google Scholar 

  176. Qi X, Yun C, Sun L, Xia J, Wu Q, Wang Y, Wang L, Zhang Y, Liang X, Wang L, Gonzalez FJ, Patterson AD, Liu H, Mu L, Zhou Z, Zhao Y, Li R, Liu P, Zhong C, Pang Y, Jiang C, Qiao J. Gut microbiota-bile acid-interleukin-22 axis orchestrates polycystic ovary syndrome. Nat Med. 2019;25(8):1225–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Rastelli M, Cani PD, Knauf C. The gut microbiome influences host endocrine functions. Endocr Rev. 2019;40(5):1271–84.

    Article  PubMed  Google Scholar 

  178. Santos-Marcos JA, Rangel-Zuñiga OA, Jimenez-Lucena R, Quintana-Navarro GM, Garcia-Carpintero S, Malagon MM, Landa BB, Tena-Sempere M, Perez-Martinez P, Lopez-Miranda J, Perez-Jimenez F, Camargo A. Influence of gender and menopausal status on gut microbiota. Maturitas. 2018;116:43–53.

    Article  PubMed  Google Scholar 

  179. Chen KL, Madak-Erdogan Z. Estrogen and microbiota crosstalk: should we pay attention? Trends Endocrinol Metab. 2016;27(11):752–5.

    Article  CAS  PubMed  Google Scholar 

  180. Baker JM, Al-Nakkash L, Herbst-Kralovetz MM. Estrogen-gut microbiome axis: physiological and clinical implications. Maturitas. 2017;103:45–53.

    Article  CAS  PubMed  Google Scholar 

  181. Frankenfeld CL, Atkinson C, Wähälä K, Lampe JW. Obesity prevalence in relation to gut microbial environments capable of producing equol or O-desmethylangolensin from the isoflavone daidzein. Eur J Clin Nutr. 2014;68(4):526–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Belstrom D, Holmstrup P, Fiehn NE, Rosing K, Bardow A, Paster BJ, Lynge Pedersen AM. Bacterial composition in whole saliva from patients with severe hyposalivation–a case-control study. Oral Dis. 2016;22:330–7.

    Article  CAS  PubMed  Google Scholar 

  183. Hernández-Vigueras S, Martínez‐Garriga B, Sánchez MC, Sanz M, Estrugo-Devesa A, Vinuesa T, López-López J, Viñas M. Oral microbiota, periodontal status, and osteoporosis in postmenopausal females. J Periodontol. 2016;87(2):124–33.

    Article  PubMed  Google Scholar 

  184. Suresh L, Radfar L. Pregnancy and lactation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97:672–82.

    Article  PubMed  Google Scholar 

  185. Brennan RM, Genco RJ, Hovey KM, Trevisan M, Wactawski-Wende J. Clinical attachment loss, systemic bone density, and subgingival calculus in postmenopausal women. J Periodontol. 2007;78:2104–11.

    Article  PubMed  Google Scholar 

  186. Mascarenhas P, Gapski R, Al-Shammari K, Wang HL. Influence of sex hormones on the periodontium. J Clin Periodontol. 2003;30:671–81.

    Article  CAS  PubMed  Google Scholar 

  187. Tarkkila L, Kari K, Furuholm J, Tiitinen A, Meurman JH. Periodontal disease-associated micro-organisms in peri-menopausal and post-menopausal women using or not using hormone replacement therapy. A two-year follow-up study. BMC Oral Health. 2010;10:10.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Pilgram TK, Hildebolt CF, Dotson M, Cohen SC, Hauser JF, Kardaris E, Civitelli R. Relationships between clinical attachment level and spine and hip bone mineral density: data from healthy postmenopausal women. J Periodontol. 2002;73:298–301.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhong Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, S. et al. (2023). The Systemic Effects of Ovarian Aging. In: Wang, S. (eds) Ovarian Aging. Springer, Singapore. https://doi.org/10.1007/978-981-19-8848-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8848-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8847-9

  • Online ISBN: 978-981-19-8848-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics