Skip to main content

Bridging the Flexibility Concepts in the Buildings and Multi-energy Domains

  • Conference paper
  • First Online:
Sustainability in Energy and Buildings 2022 (SEB 2022)

Abstract

This paper aims to stimulate a discussion on how to create a bridge between the concept of flexibility used in power and energy systems and the flexibility that buildings can offer for providing services to the electrical system. The paper recalls the main concepts and approaches considered in the power systems and multi-energy systems, and summarises some aspects of flexibility in buildings. The overview shows that there is room to strengthen the contacts among the scientists operating in these fields. The common aim is to identify the complementary aspects and provide inputs to enhance the methodologies and models to enable and support an effective energy and ecologic transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swaney, R.E., Grossmann, I.E.: An index for operational flexibility in chemical process design. Part I: Formul. Theory. AIChE 31(4), 621–630 (1985)

    Google Scholar 

  2. Lin, Y., Barooah, P., Mathieu, J.L.: Ancillary services through demand scheduling and control of commercial buildings. IEEE Trans. Power Syst. 32(1), 186–197 (2017)

    Article  Google Scholar 

  3. Energy in Buildings and Community Programme, EBC Annex 67. http://annex67.org

  4. Østergaard Jensen, S., et al.: IEA EBC Annex 67 energy flexible buildings. Energy Build. 155, 25–34 (2017)

    Article  Google Scholar 

  5. Hillberg, E., et al.: Flexibility needs in the future power system—Discussion paper. ISGAN Annex 6 Power T&D Systems (2019)

    Google Scholar 

  6. EPRI: Flexible Operations Program (2021). https://www.epri.com/portfolio/programs/106194

  7. CEER Distribution Systems Working Group: Flexibility use at distribution level—A CEER conclusions paper. CEER C18-DS-42-04 (2018)

    Google Scholar 

  8. IRENA: power system flexibility for the energy transition: part 1, Overview for policy makers. Int. Renew. Energy Agency, Abu Dhabi (2018)

    Google Scholar 

  9. European Smart Grids Task Force—Expert Group 3: Demand Side Flexibility—Perceived barriers and proposed recommendations, Final Report (2019)

    Google Scholar 

  10. IEA: Status of power system transformation 2019: power system flexibility. International Energy Agency (2019)

    Google Scholar 

  11. Zhou, Y., Cao, S.: Quantification of energy flexibility of residential net-zero-energy buildings involved with dynamic operations of hybrid energy storages and diversified energy conversion strategies. Sustain. Energy Grids Netw. 21, 100304 (2020)

    Article  Google Scholar 

  12. Li, H., Wang, Z., Hong, T., Piette, M.A.: Energy flexibility of residential buildings: a systematic review of characterization and quantification methods and applications. Adv. Appl. Energy 3, 100054 (2021)

    Google Scholar 

  13. Li, R., You, S.: Exploring potential of energy flexibility in buildings for energy system services. CSEE J. Power Energy Syst. 4(4), 434–443 (2018)

    Article  MathSciNet  Google Scholar 

  14. Ghilardi, L.M.P., Castelli, A.F., Moretti, L., Morini, M., Martelli, E.: Co-optimization of multi-energy system operation, district heating/cooling network and thermal comfort management for buildings. Appl. Energy 302, 117480 (2021)

    Article  Google Scholar 

  15. Arteconi, A., Mugnini, A., Polonara, F.: Energy flexible buildings: a methodology for rating the flexibility performance of buildings with electric heating and cooling systems. Appl. Energy 251, 113387 (2019)

    Article  Google Scholar 

  16. Albadi, M.H., El-Saadany, E.F.: A summary of demand response in electricity markets. Electr Power Syst Res 78, 1989–1996 (2008)

    Article  Google Scholar 

  17. Heffner, G., Goldman, C., Kirby, B., Kintner-Meyer, M.: Loads providing ancillary services: review of international experience. Ernest Orlando Lawrence Berkeley National Laboratory, LBNL-62701, ORNL/TM-2007/060, PNNL-16618 (2007)

    Google Scholar 

  18. Amin, A., Kem, O., Gallegos, P., Chervet, P., Ksontini, F., Mourshed, M.: Demand response in buildings: unlocking energy flexibility through district-level electro-thermal simulation. Appl. Energy 305, 117836 (2022)

    Article  Google Scholar 

  19. Avramidis, I.A., Capitanescu, F., Evangelopoulos, V.A., Georgilakis, P.S., Deconinck, G.: In pursuit of new real-time ancillary services providers: hidden opportunities in low voltage networks and sustainable buildings. IEEE Trans. Smart Grid 13(1), 429–442 (2022)

    Google Scholar 

  20. Kazemi-Razi, S.M., Askarian Abyaneh, H., Nafisi, H., Ali, Z., Marzband, M.: Enhancement of flexibility in multi-energy microgrids considering voltage and congestion improvement: robust thermal comfort against reserve calls. Sustain. Cities Soc. 74, 103160 (2021)

    Article  Google Scholar 

  21. Saavedra, A., Negrete-Pincetic, M., Rodríguez, R., Salgado, M., Lorca, Á.: Flexible load management using flexibility bands. Appl. Energy 317, 119077 (2022)

    Article  Google Scholar 

  22. Degefa, M.Z., Bakken Sperstad, I., Sæle, H.: Comprehensive classifications and characterizations of power system flexibility resources. Electric Power Syst. Res. 194, 107022 (2021)

    Article  Google Scholar 

  23. Li, J., Liu, F., Li, Z., Shao, C., Liu, X.: Grid-side flexibility of power systems in integrating large-scale renewable generations: a critical review on concepts, formulations and solution approaches. Renew. Sustain. Energy Rev. 93, 272–284 (2018)

    Article  Google Scholar 

  24. Ma, O., et al.: Demand response for ancillary services. IEEE Trans. Smart Grid 4(4), 1988–1995 (2013)

    Article  Google Scholar 

  25. D’Ettorre, F., De Rosa, M., Conti, P., Testi, D., Finn, D.: Mapping the energy flexibility potential of single buildings equipped with optimally-controlled heat pump, gas boilers and thermal storage. Sustain. Cities Soc. 50, 101689 (2019)

    Article  Google Scholar 

  26. Kim, Y., Blum, D.H., Xu, N., Su, L., Norford, L.K.: Technologies and magnitude of ancillary services provided by commercial buildings. Proc. IEEE 104(4), 758–779 (2016)

    Article  Google Scholar 

  27. Ulbig, A., Andersson, G.: Analyzing operational flexibility of electric power systems. Electr. Power Energy Syst. 72, 155–164 (2015)

    Article  Google Scholar 

  28. Makarov, Y., Loutan, C., Ma, J., de Mello, P.: Operational impacts of wind generation on California power systems. IEEE Trans. Power Syst. 24(2), 1039–1050 (2009)

    Article  Google Scholar 

  29. Chicco, G., Riaz, S., Mazza, A., Mancarella, P.: Flexibility from distributed multienergy systems. Proc. IEEE 108(9), 1496–1517 (2020)

    Article  Google Scholar 

  30. Good, N., Mancarella, P.: Flexibility in multi-energy communities with electrical and thermal storage: a stochastic, robust approach for multi-service demand response. IEEE Trans. Smart Grid 10(1), 503–513 (2019)

    Article  Google Scholar 

  31. Hinker, J., Knappe, H., Myrzik, J.M.A.: Precise assessment of technically feasible power vector interactions for arbitrary controllable multi-energy systems. IEEE Trans. Smart Grid 10(1), 1146–1155 (2019)

    Article  Google Scholar 

  32. Neyestani, N., Yazdani-Damavandi, M., Shafie-khah, M., Chicco, G., Catalão, J.P.S.: Stochastic modeling of multienergy carriers dependencies in smart local networks with distributed energy resources. IEEE Trans. Smart Grid 6(4), 1748–1762 (2015)

    Article  Google Scholar 

  33. Vigna, I., Pernetti, R., Pasut, W., Lollini, R.: New domain for promoting energy efficiency: energy flexible building cluster. Sustain. Cities Soc. 38, 526–533 (2018)

    Article  Google Scholar 

  34. Tang, H., Wang, S.: Energy flexibility quantification of grid-responsive buildings: energy flexibility index and assessment of their effectiveness for applications. Energy 221, 119756 (2021)

    Article  Google Scholar 

  35. Zhang, L., Good, N., Mancarella, P.: Building-to-grid flexibility: modelling and assessment metrics for residential demand response from heat pump aggregations. Appl. Energy 233–234, 709–723 (2019)

    Article  Google Scholar 

  36. Arkhangelski, J., Abdou-Tankari, M., Lefebvre, G.: Ancillary services for distribution grid: demand response of building thermal inertia case. In: Proceedings of the 2020 International Conference on Computational Intelligence for Smart Power System and Sustainable Energy (CISPSSE), Keonjhar, India (2020)

    Google Scholar 

  37. Gao, Q., Demoulin, M., Wang, H., Riaz, S., Mancarella, P.: Flexibility characterisation from thermal inertia of buildings at city level: a bottom-up approach. In: Proceedings of the 2020 55th International Universities Power Engineering Conference (UPEC) (2020)

    Google Scholar 

  38. Good, N., Karangelos, E., Navarro-Espinosa, A., Mancarella, P.: Optimization under uncertainty of thermal storage based flexible demand response with quantification of residential users’ discomfort. IEEE Trans. Smart Grid 6(5), 2333–2342 (2015)

    Article  Google Scholar 

  39. Amadeh, A., Lee, Z.E., Zhang, K.M.: Quantifying demand flexibility of building energy systems under uncertainty. Energy 246, 123291 (2022)

    Article  Google Scholar 

  40. Reynders, G., Amaral Lopes, R., Marszal-Pomianowska, A., Aelenei, D., Martins, J., Saelens, D.: Energy flexible buildings: An evaluation of definitions and quantification methodologies applied to thermal storage. Energy Build. 166, 372–390 (2018)

    Article  Google Scholar 

  41. Grønborg Junker, R., et al.: Characterizing the energy flexibility of buildings and districts. Appl. Energy 225, 175–182 (2018)

    Article  Google Scholar 

  42. Vigna, I., Lollini, R., Pernetti, R.: Assessing the energy flexibility of building clusters under different forcing factors. J. Build. Eng. 44, 102888 (2021)

    Article  Google Scholar 

  43. Grønborg Junker, R., Relan, R., Madsen, H.: Designing individual penalty signals for improved energy flexibility utilisation. IFAC-PapersOnLine 52(4), 123–128 (2019)

    Article  Google Scholar 

  44. Klein, K., Langner, R., Kalz, D., Herkel, S., Henning, H.M.: Grid support coefficients for electricity-based heating and cooling and field data analysis of present-day installations in Germany. Appl. Energy 162, 853–867 (2016)

    Article  Google Scholar 

  45. Klein, K., Herkel, S., Henning, H.M., Felsmann, C.: Load shifting using the heating and cooling system of an office building: quantitative potential evaluation for different flexibility and storage options. Appl. Energy 203, 917–937 (2017)

    Article  Google Scholar 

  46. Enescu, D.: A review of thermal comfort models and indicators for indoor environments. Renew. Sustain. Energy Rev. 79, 1353–1379 (2017)

    Article  Google Scholar 

  47. Stinner, S., Huchtemann, K., Müller, D.: Quantifying the operational flexibility of building energy systems with thermal energy storages. Appl. Energy 181, 140–154 (2016)

    Article  Google Scholar 

  48. Motegi, N., Piette, M.A., Watson, D.S.,Kiliccote, S., Xu, P.: Introduction to commercial building control strategies and techniques for demand response. Lawrence Berkeley Nat. Lab., Tech. Rep. (LBNL-59975) (2007)

    Google Scholar 

  49. Nguyen, D.T., Le, L.B.: Joint optimization of electric vehicle and home energy scheduling considering user comfort preference. IEEE Trans. Smart Grid 5(1), 188–199 (2014)

    Article  Google Scholar 

  50. Papadaskalopoulos, D., Strbac, G., Mancarella, P., Aunedi, M., Stanojevic, V.: Decentralized participation of flexible demand in electricity markets—Part II: application with electric vehicles and heat pump systems. IEEE Trans. Power Syst. 28(4), 3667–3674 (2013)

    Article  Google Scholar 

  51. Lin, Y., Mathieu, J.L., Johnson, J.X., Hiskens, I.A., Backhaus, S.: Explaining inefficiencies in commercial buildings providing power system ancillary services. Energy Build. 152, 216–226 (2017)

    Article  Google Scholar 

  52. Chen, Y., Xu, P., Gu, J., Schmidt, F., Li, W.: Measures to improve energy demand flexibility in buildings for demand response (DR): a review. Energy Build. 177, 125–139 (2018)

    Article  Google Scholar 

  53. ASHRAE: Energy estimating and modeling methods. ASHRAE Handbook, Chapter 19. https://handbook.ashrae.org/Handbooks/F17/SI/f17_ch19/f17_ch19_si.aspx

  54. Jin, X., Wang, X., Mu, Y., Jia, H., Xu, X., Qi, Y., Yu, X., Qi, F.: Optimal scheduling approach for a combined cooling, heating and power building microgrid considering virtual storage system. In: Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Tianjin, China (2016)

    Google Scholar 

  55. Sikder, O., Jansson, P.M.: Thermal inertia of a building as virtual energy storage: a sustainable solution for smart grids. In: Proceedings of the 2018 53rd International Universities Power Engineering Conference (UPEC), Glasgow, Scotland (2018)

    Google Scholar 

  56. Asare, P., Ononuju, C., Jansson, P.M.: Preliminary quantitative evaluation of residential virtual energy storage using power sensing. In: Proceedings of the 2017 IEEE Sensors Applications Symposium (SAS), Glassboro, NJ, USA (2017)

    Google Scholar 

  57. Fambri, G., Badami, M., Tsagkrasoulis, D., Katsiki, V., Giannakis, G., Papanikolaou, A.: Demand flexibility enabled by virtual energy storage to improve renewable energy penetration. Energies 13, 5128 (2020)

    Article  Google Scholar 

  58. Gusain, D., Cvetković, M., Palensky, P.: Quantification of operational flexibility from a portfolio of flexible energy resources. Int. J. Electr. Power Energy Syst. 141, 107466 (2022)

    Article  Google Scholar 

  59. Mancarella, P., Chicco, G.: Real-time demand response from energy shifting in distributed multi-generation. IEEE Trans. Smart Grid 4(4), 1928–1938 (2013)

    Article  Google Scholar 

  60. Mancarella, P., Chicco, G., Capuder, T.: Arbitrage opportunities for distributed multi-energy systems in providing power system ancillary services. Energy 161, 381–395 (2018)

    Article  Google Scholar 

  61. Geidl, M., Koeppel, G., Favre-Perrod, P., Klöckl, B., Andersson, G., Fröhlich, K.: Energy hubs for the future. IEEE Power Energy Mag. 5(1), 25–30 (2007)

    Article  Google Scholar 

  62. Chicco, G., Mancarella, P.: Matrix modelling of small-scale trigeneration systems and application to operational optimization. Energy 34(3), 261–273 (2009)

    Article  Google Scholar 

  63. Wang, Y., Cheng, J., Zhang, N., Kang, C.: Automatic and linearized modeling of energy hub and its flexibility analysis. Appl. Energy 211, 705–714 (2018)

    Article  Google Scholar 

  64. Hao, H., Sanandaji, B.M., Poolla, K., Vincent, T.L.: Aggregate flexibility of thermostatically controlled loads. IEEE Trans. Power Syst. 30(1), 189–198 (2015)

    Article  Google Scholar 

  65. Zhao, L., Zhang, W., Hao, H., Kalsi, K.: A geometric approach to aggregate flexibility modeling of thermostatically controlled loads. IEEE Trans. Power Syst. 32(6), 4721–4731 (2017)

    Article  Google Scholar 

  66. Wang, G., Li, Z., Wang, F.: Enhanced sufficient battery model for aggregate flexibility of thermostatically controlled loads considering coupling constraints. IEEE Trans. Sustain. Energy 12(4), 2493–2496 (2021)

    Article  MathSciNet  Google Scholar 

  67. Wu, D., Wang, P., Ma, X., Kalsi, K.: Scheduling and control of flexible building loads for grid services based on a virtual battery model. IFAC-PapersOnLine 53(2), 13333–13338 (2020)

    Article  Google Scholar 

  68. Hughes, J.T., Domínguez-García, A.D., Poolla, K.: Identification of virtual battery models for flexible loads. IEEE Trans. Power Syst. 31(6), 4660–4669 (2016)

    Article  Google Scholar 

  69. Hao, H., Wu, D., Lian, J., Yang, T.: Optimal coordination of building loads and energy storage for power grid and end user services. IEEE Trans. Smart Grid 9(5), 4335–4345 (2018)

    Article  Google Scholar 

  70. Heussen, K., Koch, S., Ulbig, A., Andersson, G.: Unified system-level modeling of intermittent renewable energy sources and energy storage for power system operation. IEEE Syst. J. 6(1), 140–151 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Chicco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chicco, G., Enescu, D., Mazza, A. (2023). Bridging the Flexibility Concepts in the Buildings and Multi-energy Domains. In: Littlewood, J., Howlett, R.J., Jain, L.C. (eds) Sustainability in Energy and Buildings 2022 . SEB 2022. Smart Innovation, Systems and Technologies, vol 336. Springer, Singapore. https://doi.org/10.1007/978-981-19-8769-4_35

Download citation

Publish with us

Policies and ethics