Skip to main content

Detecting Urban form Using Remote Sensing: Spatiotemporal Research Gaps for Sustainable Environment and Human Health

  • Chapter
  • First Online:
Earth Data Analytics for Planetary Health

Abstract

Remote sensing offers large-scale and longitudinal assessment of the size, density, and function of cities associated with the sustainable environment and human well-being. In this chapter, we synthesize 376 peer-reviewed studies on urban land cover, building density, three-dimensional (3-D) structure, and land use using remote sensing approaches. We evaluated the sources of data, detection methods, as well as the spatiotemporal characteristics (e.g., locations and spatiotemporal scales). Our review identifies three research gaps: (1) Many urbanization studies monitor urban/non-urban change for a long period but not for the patterns of 3-D urban structure; (2) Increasing number of studies use deep learning approaches to detect urban land cover in large scales, especially with Sentinel-2, but there is a lack of time-series analysis and temporal accuracy assessment; (3) most of the urban land change studies focused on North America and East Asia but not in the Global South. A dilemma lies behind these research gaps: newer, high-resolution imagery, able to detect nuanced urban attributes, has a relatively short temporal span. In contrast, older imagery can detect long-term changes but has a lower resolution. This problem has led to a considerable paucity in investigating long-term urban dynamics. For instance, most of the studies investigating 3-D urban form covered less than five years. Dealing with these issues, recent developments in data fusion, temporal accuracy assessment, object-based image analysis, and deep learning methods are showing promise to enhance spatial resolution, extend temporal coverage, and to characterize land use intensity and 3-D structure, which are important factors affecting temperature, physical activities associated with public health. The increasing availability of computational power such as via Google Earth Engine allows analysis at large spatiotemporal scales such as comparing urban form and sustainable/health outcomes across multiple cities. We foresee increasing importance of remote sensing in providing evidence-based knowledge for policies and science of health cities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United Nations (2018) World urbanization prospects 2018. United Nations Department for Economic and Social Affiars

    Google Scholar 

  2. Huang K et al (2019) Projecting global urban land expansion and heat island intensification through 2050. Environ Res Lett 14(11):114037

    Article  Google Scholar 

  3. Huang K et al (2021) Persistent increases in nighttime heat stress from urban expansion despite heat island mitigation. J Geophys Res Atmos, p e2020JD033831

    Google Scholar 

  4. Stone B, Hess JJ, Frumkin H (2010) Urban form and extreme heat events: are sprawling cities more vulnerable to climate change than compact cities. Environ Health Perspect 118(10):1425–1428

    Article  Google Scholar 

  5. Bereitschaft B, Debbage K (2013) Urban form, air pollution, and CO2 emissions in large US metropolitan areas. Prof Geogr 65(4):612–635

    Article  Google Scholar 

  6. d’Amour CB et al (2017) Future urban land expansion and implications for global croplands. Proc Natl Acad Sci 114(34):8939–8944

    Article  Google Scholar 

  7. d’Amour CB et al (2020) Urbanization, processed foods, and eating out in India. Glob Food Secur 25:100361

    Article  Google Scholar 

  8. Frank LD, Wali B (2021) Treating two pandemics for the price of one: Chronic and infectious disease impacts of the built and natural environment. Sustain Cities Soc 73:103089

    Article  Google Scholar 

  9. Chen T-HK, Chen VY-J, Wen T-H (2018) Revisiting the role of rainfall variability and its interactive effects with the built environment in urban dengue outbreaks. Appl Geogr 101:14–22

    Article  Google Scholar 

  10. Seto KC, Güneralp B, Hutyra LR (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci 109(40):16083–16088

    Article  Google Scholar 

  11. Samuelsson K et al (2018) Impact of environment on people’s everyday experiences in Stockholm. Landsc Urban Plan 171:7–17

    Article  Google Scholar 

  12. Evans GW (2003) The built environment and mental health. J Urban Health 80(4):536–555

    Article  Google Scholar 

  13. Kyttä M et al (2016) Urban happiness: context-sensitive study of the social sustainability of urban settings. Environ Plan B Plan Des 43(1):34–57

    Article  Google Scholar 

  14. Sallis JF et al (2016) Physical activity in relation to urban environments in 14 cities worldwide: a cross-sectional study. Lancet 387(10034):2207–2217

    Article  Google Scholar 

  15. Stokes EC, Seto KC (2019) Characterizing and measuring urban landscapes for sustainability. Environ Res Lett 14(4):045002

    Article  Google Scholar 

  16. Güneralp B et al (2017) Global scenarios of urban density and its impacts on building energy use through 2050. Proc Natl Acad Sci, 201606035

    Google Scholar 

  17. Mouratidis K (2018) Built environment and social well-being: How does urban form affect social life and personal relationships? Cities 74:7–20

    Article  Google Scholar 

  18. Sallis JF et al (2012) Role of built environments in physical activity, obesity, and cardiovascular disease. Circulation 125(5):729–737

    Article  Google Scholar 

  19. Gren Å et al (2018) How smart is smart growth? Examining the environmental validation behind city compaction. Ambio, 1–10

    Google Scholar 

  20. Ko Y, Radke JD (2014) The effect of urban form and residential cooling energy use in Sacramento, California. Environ Plan B Plan Des 41(4):573–593

    Article  Google Scholar 

  21. Lariviere I, Lafrance G (1999) Modelling the electricity consumption of cities: effect of urban density. Energy Econ 21(1):53–66

    Article  Google Scholar 

  22. Lee S, Lee B (2014) The influence of urban form on GHG emissions in the US household sector. Energy Policy 68:534–549

    Article  Google Scholar 

  23. Seto KC et al (2014) Human settlements, infrastructure and spatial planning

    Google Scholar 

  24. Holden E, Norland IT (2005) Three challenges for the compact city as a sustainable urban form: household consumption of energy and transport in eight residential areas in the greater Oslo region. Urban Stud 42(12):2145–2166

    Article  Google Scholar 

  25. Holden E, Linnerud K (2011) Troublesome leisure travel: the contradictions of three sustainable transport policies. Urban Stud 48(14):3087–3106

    Article  Google Scholar 

  26. Stone B (2008) Urban sprawl and air quality in large US cities. J Environ Manag 86(4):688–698

    Article  Google Scholar 

  27. Dave S (2010) High urban densities in developing countries: a sustainable solution? Built Environ 36(1):9–27

    Article  Google Scholar 

  28. Rodríguez MC, Dupont-Courtade L, Oueslati W (2016) Air pollution and urban structure linkages: evidence from European cities. Renew Sustain Energy Rev 53:1–9

    Article  Google Scholar 

  29. Clark LP, Millet DB, Marshall JD (2011) Air quality and urban form in US urban areas: evidence from regulatory monitors. Environ Sci Technol 45(16):7028–7035

    Article  Google Scholar 

  30. Yeh C et al (2020) Using publicly available satellite imagery and deep learning to understand economic well-being in Africa. Nat Commun 11(1):1–11

    Article  Google Scholar 

  31. Sharma R, Joshi P (2013) Monitoring urban landscape dynamics over Delhi (India) using remote sensing (1998–2011) inputs. J Indian Soc Remote Sens 41(3):641–650

    Article  Google Scholar 

  32. Li X et al (2018) Mapping annual urban dynamics (1985–2015) using time series of Landsat data. Remote Sens Environ 216:674–683

    Article  Google Scholar 

  33. Sexton JO et al (2013) Urban growth of the Washington, DC–Baltimore, MD metropolitan region from 1984 to 2010 by annual, Landsat-based estimates of impervious cover. Remote Sens Environ 129:42–53

    Article  Google Scholar 

  34. Bagan H, Yamagata Y (2012) Landsat analysis of urban growth: how Tokyo became the world’s largest megacity during the last 40 years. Remote Sens Environ 127:210–222

    Article  Google Scholar 

  35. Shi L et al (2017) Impervious surface change mapping with an uncertainty-based spatial-temporal consistency model: a case study in Wuhan city using Landsat time-series datasets from 1987 to 2016. Remote Sens 9(11):1148

    Article  Google Scholar 

  36. Liu X et al (2020) High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat Sustain 3(7):564–570

    Article  Google Scholar 

  37. Gong P et al (2020) Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens Environ 236:111510

    Article  Google Scholar 

  38. Corbane C et al (2019) Automated global delineation of human settlements from 40 years of Landsat satellite data archives. Big Earth Data 3(2):140–169

    Article  Google Scholar 

  39. Marconcini M et al (2020) Outlining where humans live, the World Settlement Footprint 2015. Sci Data 7(1):1–14

    Article  Google Scholar 

  40. Aburas MM et al (2016) The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: a review. Int J Appl Earth Obs Geoinf 52:380–389

    Google Scholar 

  41. Zhang W et al (2018) Analyzing horizontal and vertical urban expansions in three East Asian megacities with the SS-coMCRF model. Landsc Urban Plan 177:114–127

    Article  Google Scholar 

  42. Song X-P et al (2016) Characterizing the magnitude, timing and duration of urban growth from time series of Landsat-based estimates of impervious cover. Remote Sens Environ 175:1–13

    Article  Google Scholar 

  43. Roback K et al (2018) The size, distribution, and mobility of landslides caused by the 2015 Mw7. 8 Gorkha earthquake, Nepal. Geomorphology 301:121–138

    Google Scholar 

  44. Sekizawa R, Ichii K, Kondo M (2015) Satellite-based detection of evacuation-induced land cover changes following the Fukushima Daiichi nuclear disaster. Remote Sens Lett 6(11):824–833

    Article  Google Scholar 

  45. Weng Q (2012) Remote sensing of impervious surfaces in the urban areas: requirements, methods, and trends. Remote Sens Environ 117:34–49

    Article  Google Scholar 

  46. Bhatta B, Saraswati S, Bandyopadhyay D (2010) Urban sprawl measurement from remote sensing data. Appl Geogr 30(4):731–740

    Article  Google Scholar 

  47. Zhu Z et al (2019) Understanding an urbanizing planet: strategic directions for remote sensing. Remote Sens Environ 228:164–182

    Article  Google Scholar 

  48. Reba M, Seto KC (2020) A systematic review and assessment of algorithms to detect, characterize, and monitor urban land change. Remote Sens Environ 242:111739

    Article  Google Scholar 

  49. Seto KC, Ramankutty N (2016) Hidden linkages between urbanization and food systems. Science 352(6288):943–945

    Article  Google Scholar 

  50. Salerno F, Gaetano V, Gianni T (2018) Urbanization and climate change impacts on surface water quality: enhancing the resilience by reducing impervious surfaces. Water Res 144:491–502

    Article  Google Scholar 

  51. Cui Y et al (2019) The cost of rapid and haphazard urbanization: lessons learned from the Freetown landslide disaster. Landslides 16(6):1167–1176

    Article  Google Scholar 

  52. El Garouani A et al (2017) Analysis of urban growth and sprawl from remote sensing data: case of Fez, Morocco. Int J Sustain Built Environ 6(1):160–169

    Article  Google Scholar 

  53. Jat MK, Garg PK, Khare D (2008) Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. Int J Appl Earth Obs Geoinf 10(1):26–43

    Google Scholar 

  54. Homer C et al (2004) Development of a 2001 national land-cover database for the United States. Photogramm Eng Remote Sens 70(7):829–840

    Article  Google Scholar 

  55. Salvati L et al (2012) Low-density settlements and land use changes in a Mediterranean urban region. Landsc Urban Plan 105(1–2):43–52

    Article  Google Scholar 

  56. McGarigal K et al (2002) FRAGSTATS: spatial pattern analysis program for categorical maps

    Google Scholar 

  57. Johnson MT, Munshi-South J (2017) Evolution of life in urban environments. Science 358(6363):eaam8327

    Google Scholar 

  58. Fahrig L et al (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14(2):101–112

    Article  Google Scholar 

  59. Liu Y et al (2018) The relationship between urban form and air pollution depends on seasonality and city size. Environ Sci Pollut Res 25(16):15554–15567

    Article  Google Scholar 

  60. Knowles RL (1974) Energy and form: an ecological approach to urban growth

    Google Scholar 

  61. Xu Y et al (2017) Urban morphology detection and computation for urban climate research. Landsc Urban Plan 167:212–224

    Article  Google Scholar 

  62. Stewart ID, Oke TR (2012) Local climate zones for urban temperature studies. Bull Am Meteorol Soc 93(12):1879–1900

    Article  Google Scholar 

  63. Unger J, Lelovics E, Gál T (2014) Local Climate Zone mapping using GIS methods in Szeged. Hung Geogr Bull 63(1):29–41

    Google Scholar 

  64. Adolphe L (2001) A simplified model of urban morphology: application to an analysis of the environmental performance of cities. Environ Plan B Plan Des 28(2):183–200

    Article  Google Scholar 

  65. Lau SSY et al (2011) The study of summer-time heat island, built form and fabric in a densely built urban environment in compact Chinese cities: Hong Kong, Guangzhou. Int J Sustain Dev 14(1–2):30–48

    Article  Google Scholar 

  66. Naik N et al (2017) Computer vision uncovers predictors of physical urban change. Proc Natl Acad Sci 114(29):7571–7576

    Article  Google Scholar 

  67. Kotharkar R, Bagade A (2018) Local Climate Zone classification for Indian cities: a case study of Nagpur. Urban Clim 24:369–392

    Article  Google Scholar 

  68. Lelovics E et al (2014) Design of an urban monitoring network based on Local Climate Zone mapping and temperature pattern modelling. Clim Res 60(1):51–62

    Article  Google Scholar 

  69. Lin J-J, Yang A-T (2006) Does the compact-city paradigm foster sustainability? An empirical study in Taiwan. Environ Plan B Plan Des 33(3):365–380

    Article  Google Scholar 

  70. Tian Y, Jim C, Wang H (2014) Assessing the landscape and ecological quality of urban green spaces in a compact city. Landsc Urban Plan 121:97–108

    Article  Google Scholar 

  71. Ou J et al (2013) Quantifying the relationship between urban forms and carbon emissions using panel data analysis. Landsc Ecol 28(10):1889–1907

    Article  Google Scholar 

  72. Schindler S, Poirazidis K, Wrbka T (2008) Towards a core set of landscape metrics for biodiversity assessments: a case study from Dadia National Park, Greece. Ecol Indic 8(5):502–514

    Article  Google Scholar 

  73. Giridharan R, Ganesan S, Lau S (2004) Daytime urban heat island effect in high-rise and high-density residential developments in Hong Kong. Energy Build 36(6):525–534

    Article  Google Scholar 

  74. Gál T, Unger J (2009) Detection of ventilation paths using high-resolution roughness parameter mapping in a large urban area. Build Environ 44(1):198–206

    Article  Google Scholar 

  75. Zhang C et al (2018) An object-based convolutional neural network (OCNN) for urban land use classification. Remote Sens Environ 216:57–70

    Article  Google Scholar 

  76. Anderson JR (1976) A land use and land cover classification system for use with remote sensor data, vol 964. US Government Printing Office

    Google Scholar 

  77. Wentz EA et al (2014) Supporting global environmental change research: a review of trends and knowledge gaps in urban remote sensing. Remote Sens 6(5):3879–3905

    Article  Google Scholar 

  78. Heinzel J, Kemper T (2015) Automated metric characterization of urban structure using building decomposition from very high resolution imagery. Int J Appl Earth Obs Geoinf 35:151–160

    Google Scholar 

  79. Novack T, Kux H (2010) Urban land cover and land use classification of an informal settlement area using the open-source knowledge-based system InterIMAGE. Health Risk Soc 55(1):23–41

    Google Scholar 

  80. Zhang X, Du S, Wang Q (2018) Integrating bottom-up classification and top-down feedback for improving urban land-cover and functional-zone mapping. Remote Sens Environ 212:231–248

    Article  Google Scholar 

  81. Moher D et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4(1):1

    Article  Google Scholar 

  82. Xiao R-B et al (2007) Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China. J Environ Sci 19(2):250–256

    Article  Google Scholar 

  83. Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24(3):583–594

    Article  Google Scholar 

  84. Zhou Y et al (2015) A global map of urban extent from nightlights. Environ Res Lett 10(5):054011

    Article  Google Scholar 

  85. Pesaresi M et al (2016) Assessment of the added-value of sentinel-2 for detecting built-up areas. Remote Sens 8(4):299

    Article  Google Scholar 

  86. Shi K et al (2014) Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sens Lett 5(4):358–366

    Article  Google Scholar 

  87. Schneider A, Friedl MA, Potere D (2009) A new map of global urban extent from MODIS satellite data. Environ Res Lett 4(4):044003

    Article  Google Scholar 

  88. Salentinig A, Gamba P (2015) Combining SAR-based and multispectral-based extractions to map urban areas at multiple spatial resolutions. IEEE Geosci Remote Sens Mag 3(3):100–112

    Article  Google Scholar 

  89. Zhang Y, Zhang H, Lin H (2014) Improving the impervious surface estimation with combined use of optical and SAR remote sensing images. Remote Sens Environ 141:155–167

    Article  Google Scholar 

  90. Qin Y et al (2017) Quantifying annual changes in built-up area in complex urban-rural landscapes from analyses of PALSAR and Landsat images. ISPRS J Photogramm Remote Sens 124:89–105

    Article  Google Scholar 

  91. Jing W et al (2015) Mapping urban areas with integration of DMSP/OLS nighttime light and MODIS data using machine learning techniques. Remote Sens 7(9):12419–12439

    Article  Google Scholar 

  92. Trianni G et al (2015) Scaling up to national/regional urban extent mapping using Landsat data. IEEE J Sel Top Appl Earth Obs Remote Sens 8(7):3710–3719

    Article  Google Scholar 

  93. Goldblatt R et al (2018) Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover. Remote Sens Environ 205:253–275

    Article  Google Scholar 

  94. Lu D, Weng Q (2009) Extraction of urban impervious surfaces from an IKONOS image. Int J Remote Sens 30(5):1297–1311

    Article  Google Scholar 

  95. Michishita R, Jiang Z, Xu B (2012) Monitoring two decades of urbanization in the Poyang Lake area, China through spectral unmixing. Remote Sens Environ 117:3–18

    Article  Google Scholar 

  96. Powell RL et al (2007) Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sens Environ 106(2):253–267

    Article  Google Scholar 

  97. Zhang Y et al (2017) Analyzing the impacts of urbanization and seasonal variation on land surface temperature based on subpixel fractional covers using Landsat images. IEEE J Sel Top Appl Earth Obs Remote Sens 10(4):1344–1356

    Article  Google Scholar 

  98. Elghazali E (2011) Performance of Quickbird image and Lidar data fusion for 2D/3D city mapping. Aust J Basic Appl Sci 5(11):1588–1600

    Google Scholar 

  99. Hung C-LJ, James LA, Hodgson ME (2018) An automated algorithm for mapping building impervious areas from airborne LiDAR point-cloud data for flood hydrology. GISci Remote Sens 55(6):793–816

    Article  Google Scholar 

  100. Gong P et al (2010) ICEsat GLAS data for urban environment monitoring. IEEE Trans Geosci Remote Sens 49(3):1158–1172

    Article  Google Scholar 

  101. Duan G et al (2018) Establishment of an improved floor area ratio with high-resolution satellite imagery. J Indian Soc Remote Sens 46(2):275–286

    Article  Google Scholar 

  102. Peng F et al (2017) A new stereo pair disparity index (SPDI) for detecting built-up areas from high-resolution stereo imagery. Remote Sens 9(6):633

    Article  Google Scholar 

  103. Brunner D et al (2010) Building height retrieval from VHR SAR imagery based on an iterative simulation and matching technique. IEEE Trans Geosci Remote Sens 48(3):1487–1504

    Article  Google Scholar 

  104. Sauer S et al (2009) Polarimetric dual-baseline InSAR building height estimation at L-band. IEEE Geosci Remote Sens Lett 6(3):408–412

    Article  Google Scholar 

  105. Shao Y, Taff GN, Walsh SJ (2011) Shadow detection and building-height estimation using IKONOS data. Int J Remote Sens 32(22):6929–6944

    Article  Google Scholar 

  106. Chen T-HK et al (2020) Mapping horizontal and vertical urban densification in Denmark with Landsat time-series from 1985 to 2018: a semantic segmentation solution. Remote Sens Environ 251:112096

    Article  Google Scholar 

  107. Frolking S et al (2013) A global fingerprint of macro-scale changes in urban structure from 1999 to 2009. Environ Res Lett 8(2):024004

    Article  Google Scholar 

  108. Mahtta R, Mahendra A, Seto KC (2019) Building up or spreading out? Typologies of urban growth across 478 cities of 1 million+. Environ Res Lett 14(12):124077

    Article  Google Scholar 

  109. Gong F-Y et al (2018) Mapping sky, tree, and building view factors of street canyons in a high-density urban environment. Build Environ 134:155–167

    Article  Google Scholar 

  110. Zeng L et al (2018) A fast approach for large-scale Sky View Factor estimation using street view images. Build Environ 135:74–84

    Article  Google Scholar 

  111. Liang J et al (2017) Automatic sky view factor estimation from street view photographs—a big data approach. Remote Sens 9(5):411

    Article  Google Scholar 

  112. Li X et al (2020) Developing a method to estimate building height from Sentinel-1 data. Remote Sens Environ 240:111705

    Article  Google Scholar 

  113. Hermosilla T et al (2012) Assessing contextual descriptive features for plot-based classification of urban areas. Landsc Urban Plan 106(1):124–137

    Article  Google Scholar 

  114. Zhang W et al (2017) Parcel-based urban land use classification in megacity using airborne LiDAR, high resolution orthoimagery, and Google Street View. Comput Environ Urban Syst 64:215–228

    Article  Google Scholar 

  115. Song J et al (2018) Mapping urban functional zones by integrating very high spatial resolution remote sensing imagery and points of interest: a case study of xiamen, China. Remote Sens 10(11):1737

    Article  Google Scholar 

  116. Jia Y et al (2018) Urban land use mapping by combining remote sensing imagery and mobile phone positioning data. Remote Sens 10(3):446

    Article  Google Scholar 

  117. Dewan AM, Yamaguchi Y (2009) Land use and land cover change in Greater Dhaka, Bangladesh: using remote sensing to promote sustainable urbanization. Appl Geogr 29(3):390–401

    Article  Google Scholar 

  118. Cao X et al (2009) A SVM-based method to extract urban areas from DMSP-OLS and SPOT VGT data. Remote Sens Environ 113(10):2205–2209

    Article  Google Scholar 

  119. Schneider A, Friedl MA, Potere D (2010) Mapping global urban areas using MODIS 500-m data: new methods and datasets based on ‘urban ecoregions.’ Remote Sens Environ 114(8):1733–1746

    Article  Google Scholar 

  120. Esch T et al (2012) TanDEM-X mission-new perspectives for the inventory and monitoring of global settlement patterns. J Appl Remote Sens 6(1):061702

    Article  Google Scholar 

  121. Ridd MK (1995) Exploring a VIS (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities. Int J Remote Sens 16(12):2165–2185

    Article  Google Scholar 

  122. Lu D, Weng Q (2006) Spectral mixture analysis of ASTER images for examining the relationship between urban thermal features and biophysical descriptors in Indianapolis, Indiana, USA. Remote Sens Environ 104(2):157–167

    Article  Google Scholar 

  123. Li W, Wu C (2015) Incorporating land use land cover probability information into endmember class selections for temporal mixture analysis. ISPRS J Photogramm Remote Sens 101:163–173

    Article  Google Scholar 

  124. Deng C, Wu C (2013) The use of single-date MODIS imagery for estimating large-scale urban impervious surface fraction with spectral mixture analysis and machine learning techniques. ISPRS J Photogramm Remote Sens 86:100–110

    Article  Google Scholar 

  125. Zhang T et al (2017) Urban building density estimation from high-resolution imagery using multiple features and support vector regression. IEEE J Sel Top Appl Earth Obs Remote Sens 10(7):3265–3280

    Article  Google Scholar 

  126. Yoo C et al (2019) Comparison between convolutional neural networks and random forest for local climate zone classification in mega urban areas using Landsat images. ISPRS J Photogramm Remote Sens 157:155–170

    Article  Google Scholar 

  127. Rosentreter J, Hagensieker R, Waske B (2020) Towards large-scale mapping of local climate zones using multitemporal Sentinel 2 data and convolutional neural networks. Remote Sens Environ 237:111472

    Article  Google Scholar 

  128. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436

    Article  Google Scholar 

  129. Cao R et al (2018) Integrating aerial and street view images for urban land use classification. Remote Sens 10(10):1553

    Article  Google Scholar 

  130. Huang B, Zhao B, Song Y (2018) Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery. Remote Sens Environ 214:73–86

    Article  Google Scholar 

  131. Kang J et al (2018) Building instance classification using street view images. ISPRS J Photogramm Remote Sens 145:44–59

    Article  Google Scholar 

  132. Zhang X et al (2018) Multiscale geoscene segmentation for extracting urban functional zones from VHR satellite images. Remote Sens 10(2):281

    Article  Google Scholar 

  133. Li M et al (2016) Urban land use extraction from Very High Resolution remote sensing imagery using a Bayesian network. ISPRS J Photogramm Remote Sens 122:192–205

    Article  Google Scholar 

  134. Modara M, Ait Belaid M, AlJenaid S (2014) Assessment of land-use/land-cover change in Muharraq Island using multi-temporal and multi-source geospatial data. Int J Image Data Fus 5(3):210–225

    Google Scholar 

  135. Zhang L, Zhang M, Yao Y (2018) Mapping seasonal impervious surface dynamics in Wuhan urban agglomeration, China from 2000 to 2016. Int J Appl Earth Obs Geoinf 70:51–61

    Google Scholar 

  136. Wurm M et al (2014) Investigating the applicability of Cartosat-1 DEMs and topographic maps to localize large-area urban mass concentrations. IEEE J Sel Top Appl Earth Obs Remote Sens 7(10):4138–4152

    Article  Google Scholar 

  137. Biljecki F, Ledoux H, Stoter J (2017) Generating 3D city models without elevation data. Comput Environ Urban Syst 64:1–18

    Article  Google Scholar 

  138. Erbek FS, Özkan C, Taberner M (2004) Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities. Int J Remote Sens 25(9):1733–1748

    Article  Google Scholar 

  139. Zhou Y et al (2018) A global record of annual urban dynamics (1992–2013) from nighttime lights. Remote Sens Environ 219:206–220

    Article  Google Scholar 

  140. Li M et al (2017) Incorporating open source data for Bayesian classification of urban land use from vhr stereo images. IEEE J Sel Top Appl Earth Obs Remote Sens 10(11):4930–4943

    Article  Google Scholar 

  141. Mertes CM et al (2015) Detecting change in urban areas at continental scales with MODIS data. Remote Sens Environ 158:331–347

    Article  Google Scholar 

  142. Li X et al (2015) Assessing street-level urban greenery using Google Street View and a modified green view index. Urban For Urban Green 14(3):675–685

    Article  Google Scholar 

  143. Ke Y et al (2016) Downscaling of MODIS One kilometer evapotranspiration using Landsat-8 data and machine learning approaches. Remote Sens 8(3):215

    Article  Google Scholar 

  144. Chen T-HK et al (2019) Detecting and monitoring long-term landslides in urbanized areas with nighttime light data and multi-seasonal Landsat imagery across Taiwan from 1998 to 2017. Remote Sens Environ 225:317–327

    Article  Google Scholar 

  145. Lyu H, Lu H (2017) A deep information based transfer learning method to detect annual urban dynamics of Beijing and Newyork from 1984 to 2016. In: 2017 IEEE international geoscience and remote sensing symposium (IGARSS). IEEE

    Google Scholar 

  146. Liu X et al (2018) High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens Environ 209:227–239

    Article  Google Scholar 

  147. Burke M et al (2021) Using satellite imagery to understand and promote sustainable development. Science 371(6535):eabe8628

    Google Scholar 

  148. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer

    Google Scholar 

  149. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition

    Google Scholar 

  150. Chen L-C et al (2017) Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848

    Article  Google Scholar 

  151. Zhu XX et al (2017) Deep learning in remote sensing: a comprehensive review and list of resources. IEEE Geosci Remote Sens Mag 5(4):8–36

    Article  Google Scholar 

  152. Qiu C et al (2020) A framework for large-scale mapping of human settlement extent from Sentinel-2 images via fully convolutional neural networks. ISPRS J Photogramm Remote Sens 163:152–170

    Article  Google Scholar 

  153. Zhao K et al (2018) Building extraction from satellite images using mask R-CNN with building boundary regularization. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops

    Google Scholar 

  154. Sharifi A (2019) Resilient urban forms: a macro-scale analysis. Cities 85:1–14

    Article  Google Scholar 

  155. Sharifi A (2019) Urban form resilience: a meso-scale analysis. Cities 93:238–252

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzu-Hsin Karen Chen .

Editor information

Editors and Affiliations

Appendix

Appendix

See Tables 10.5 and 10.6

Table 10.5 Full query to search relevant literature on Scopus
Table 10.6 Checklist of general items (ID #1 to #11) and spatiotemporal characteristics (ID #12 to #24) used when constructing the review database for urban form detection

.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, TH.K., Prishchepov, A.V., Sabel, C.E. (2023). Detecting Urban form Using Remote Sensing: Spatiotemporal Research Gaps for Sustainable Environment and Human Health. In: Wen, TH., Chuang, TW., Tipayamongkholgul, M. (eds) Earth Data Analytics for Planetary Health. Atmosphere, Earth, Ocean & Space. Springer, Singapore. https://doi.org/10.1007/978-981-19-8765-6_10

Download citation

Publish with us

Policies and ethics