Skip to main content

Interpretable Decisions Trees via Human-in-the-Loop-Learning

  • Conference paper
  • First Online:
Data Mining (AusDM 2022)

Abstract

Interactive machine learning (IML) enables models that incorporate human expertise because the human collaborates in the building of the learned model. Moreover, the expert driving the learning (human-in-the-loop-learning) can steer the learning objective, not only for accuracy, but perhaps for discrimination or characterisation rules, where isolating one class is the primary objective. Moreover, the interaction enables humans to explore and gain insights into the dataset, and to validate the learned models. This requires transparency and interpretable classifiers. The importance and fundamental relevance of understandable classification has recently been emphasised across numerous applications under the banner of explainable artificial intelligence. We use parallel coordinates to design an IML system that visualises decision trees with interpretable splits beyond plain parallel axis splits. Moreover, we show that discrimination and characterisation rules are also well communicated using parallel coordinates. We confirm the merits of our approach by reporting results from a large usability study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amershi, S., Cakmak, M., Knox, W.B., Kulesza, T.: Power to the people: the role of humans in interactive machine learning. AI Mag. 35(4), 105–120 (2014)

    Google Scholar 

  2. Ankerst, M., Ester, M., Kriegel, H.P.: Towards an effective cooperation of the user and the computer for classification. In: 6th ACM SIGKDD International Conference Knowledge Discovery and Data Mining, KDD, pp. 179–188. ACM, New York (2000)

    Google Scholar 

  3. Blanco-Justicia, A., Domingo-Ferrer, J.: Machine learning explainability through comprehensible decision trees. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2019. LNCS, vol. 11713, pp. 15–26. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29726-8_2

    Chapter  Google Scholar 

  4. Choo, J., et al.: iVisClassifier: an interactive visual analytics system for classification based on supervised dimension reduction. In: IEEE VAST, pp. 27–34 (2010)

    Google Scholar 

  5. Darlington, K.: Aspects of intelligent systems explanation. Univ. J. Control Autom. 1(2), 40–51 (2013)

    Article  Google Scholar 

  6. Dikshit, A., Pradhan, B.: Interpretable and explainable AI (XAI) model for spatial drought prediction. Sci. Total Environ. 801, 149797 (2021)

    Article  Google Scholar 

  7. Estivill-Castro, V.: Collaborative knowledge acquisition with a genetic algorithm. In: 9th ICTAI’97, pp. 270–277. IEEE, California (1997)

    Google Scholar 

  8. Fails, J.A., Olsen, D.R.: Interactive machine learning. In: 8th International Conference on Intelligent User Interfaces, IUI ’03, pp. 39–45. ACM, New York (2003)

    Google Scholar 

  9. Freitas, A.A.: Comprehensible classification models: a position paper. SIGKDD Explor. 15(1), 1–10 (2013)

    Article  Google Scholar 

  10. Freitas, A.A., Wieser, D., Apweiler, R.: On the importance of comprehensible classification models for protein function prediction. IEEE/ACM Trans. Comput. Biology Bioinform. 7(1), 172–182 (2010)

    Article  Google Scholar 

  11. Guidotti, R., et al.: A survey of methods for explaining black box models. ACM CSUR 51(5), 1–42 (2018)

    Google Scholar 

  12. Inselberg, A.: Parallel Coordinates : Visual Multidimensional Geometry and its Applications. Springer, New York (2009). https://doi.org/10.1007/978-0-387-68628-8

    Book  MATH  Google Scholar 

  13. Kingsford, C., Salzberg, S.L.: What are decision trees? Nat. Biotechnol. 26(9), 1011–1013 (2008)

    Article  Google Scholar 

  14. Kodratoff, Y.: Chapter 8: Machine learning. In: Knowledge Engineering Volume I Fundamentals, pp. 226–255. McGraw-Hill, USA (1990)

    Google Scholar 

  15. Lai, P.L., Liang, Y.J., Inselberg, A.: Geometric divide and conquer classification for high-dimensional data. In: DATA, pp. 79–82. SciTePress (2012)

    Google Scholar 

  16. Lakkaraju, H., et al.: Faithful and customizable explanations of black box models. In: AI, Ethics, and Society, AIES 2019, pp. 131–138. ACM, New York (2019)

    Google Scholar 

  17. Moore, A., Murdock, V., Cai, Y., Jones, K.: Transparent tree ensembles. In: 41st SIGIR 2018, pp. 1241–1244. ACM, New York (2018)

    Google Scholar 

  18. Palan, S., Schitter, C.: Prolific.ac-a subject pool for online experiments. Behav. Exp. Finan. 17, 22–27 (2018)

    Article  Google Scholar 

  19. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986). https://doi.org/10.1007/BF00116251

    Article  Google Scholar 

  20. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215 (2019)

    Article  Google Scholar 

  21. Samek, W., et al.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2660–2673 (2017)

    Article  MathSciNet  Google Scholar 

  22. Samek, W., Müller, K.-R.: Towards explainable artificial intelligence. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 5–22. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_1

    Chapter  Google Scholar 

  23. Teoh, S.T., Ma, K.: StarClass: interactive visual classification using star coordinates. In: SIAM International Conference on Data Mining, vol. 112, pp. 178–185 (2003)

    Google Scholar 

  24. Teoh, S.T., Ma, K.L.: PaintingClass: interactive construction, visualization and exploration of decision trees. In: 9th SIGKDD’03. ACM, New York (2003)

    Google Scholar 

  25. Ware, M., et al.: Interactive machine learning: letting users build classifiers. Int. J. Hum.-Comput. Stud. 55(3), 281–292 (2001)

    Article  MATH  Google Scholar 

  26. Webb, G.I.: Integrating machine learning with knowledge acquisition through direct interaction with domain experts. Knowledge-Based Sys. 9(4), 253–266 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Estivill-Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Estivill-Castro, V., Gilmore, E., Hexel, R. (2022). Interpretable Decisions Trees via Human-in-the-Loop-Learning. In: Park, L.A.F., et al. Data Mining. AusDM 2022. Communications in Computer and Information Science, vol 1741. Springer, Singapore. https://doi.org/10.1007/978-981-19-8746-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8746-5_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8745-8

  • Online ISBN: 978-981-19-8746-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics