Skip to main content

A Temperature-Modified Dynamic Embedded Topic Model

  • Conference paper
  • First Online:
Data Mining (AusDM 2022)

Abstract

Topic models are natural language processing models that can parse large collections of documents and automatically discover their main topics. However, conventional topic models fail to capture how such topics change as the collections evolve. To amend this, various researchers have proposed dynamic versions which are able to extract sequences of topics from timestamped document collections. Moreover, a recently-proposed model, the dynamic embedded topic model (DETM), joins such a dynamic analysis with the representational power of word and topic embeddings. In this paper, we propose modifying its word probabilities with a temperature parameter that controls the smoothness/sharpness trade-off of the distributions in an attempt to increase the coherence of the extracted topics. Experimental results over a selection of the COVID-19 Open Research Dataset (CORD-19), the United Nations General Debate Corpus, and the ACL Title and Abstract dataset show that the proposed model – nicknamed DETM-tau after the temperature parameter – has been able to improve the model’s perplexity and topic coherence for all datasets.

Supported by funding from Food Agility CRC Ltd, funded under the Commonwealth Government CRC Program. The CRC Program supports industry-led collaborations between industry, researchers and the community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Otherwise known as the multinomial distribution. The recent literature on variational inference seems to prefer the “categorical distribution” diction.

References

  1. Alvarez-Melis, D., Saveski, M.: Topic modeling in Twitter: aggregating tweets by conversations. In: The 10th International Conference on Web and Social Media, pp. 519–522 (2016)

    Google Scholar 

  2. Arnold, C., El-Saden, S., Bui, A., Taira, R.: Clinical case-based retrieval using latent topic analysis.In: AMIA Annual Symposium Proceedings, vol. 2010, pp. 26–30 (2010)

    Google Scholar 

  3. Mikhaylov, S.J., Baturo, A., Dasandi, N.: Understanding state preferences with text as data. In: Introducing the UN General Debate Corpus. Research & Politics (2017)

    Google Scholar 

  4. Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155 (2003)

    MATH  Google Scholar 

  5. Bird, S., et al.: The ACL anthology reference corpus: a reference dataset for bibliographic research in computational linguistics. In: International Conference on Language Resources and Evaluation, pp. 1755–1759 (2008)

    Google Scholar 

  6. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians, pp. 859–877 (2017)

    Google Scholar 

  7. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  8. Cecchini, M., Aytug, H., Koehler, G.J., Pathak, P.: Making words work: using financial text as a predictor of financial events. Decis. Support Syst. 50(1), 164–175 (2010)

    Article  Google Scholar 

  9. Devyatkin, D., Nechaeva, E., Suvorov, R., Tikhomirov, I.: Mapping the research landscape of agricultural sciences. Foresight STI Govern. 12(1), 57–76 (2018)

    Article  Google Scholar 

  10. Dieng, A.B., Ruiz, F.J.R., Blei, D.M.: The dynamic embedded topic model (2019)

    Google Scholar 

  11. Dieng, A.B., Ruiz, F.J.R., Blei, D.M.: Topic modeling in embedding spaces. Trans. Assoc. Comput. Linguist. 8, 439–453 (2020)

    Article  Google Scholar 

  12. Kim, H., Drake, B., Endert, A., Park, H.: ArchiText: interactive hierarchical topic modeling. IEEE Trans. Vis. Comput. Graphics 27(9), 3644–3655 (2021)

    Article  Google Scholar 

  13. Lafferty, J.D., Blei, D.M.: The dynamic topic model. In: The 23rd International Conference on Machine Learning, pp. 113–120 (2006)

    Google Scholar 

  14. Lau, J.H., Newman, D., Baldwin, T.: Machine reading tea leaves: automatically evaluating topic coherence and topic model quality. In: The 14th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2014), pp. 530–539 (2014)

    Google Scholar 

  15. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In: The 31th International Conference on Machine Learning, vol. 32, pp. 1188–1196 (2014)

    Google Scholar 

  16. Liu, T., Zhang, N.L., Chen, P.: Hierarchical latent tree analysis for topic detection. CoRR, vol. 8725, pp. 256–272 (2014)

    Google Scholar 

  17. Minsky, M.: Steps toward artificial intelligence. Proc. IRE 49(1), 8–30 (1961)

    Article  MathSciNet  Google Scholar 

  18. Nguyen, T.H., Shirai, K.: Topic modeling based sentiment analysis on social media for stock market prediction. In: The 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing (ACL-IJCNL 2015), pp. 1354–1364 (2015)

    Google Scholar 

  19. Peng, M., et al.: Neural sparse topical coding. In: The 56th Annual Meeting of the Association for Computational Linguistics (ACL 2018), pp. 2332–2340 (2018)

    Google Scholar 

  20. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in Large Margin Classifiers, pp. 61–74. MIT Press (1999)

    Google Scholar 

  21. Rodrigues, F., Lourenco, M., Ribeiro, B., Pereira, F.C.: Learning supervised topic models for classification and regression from crowds. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2409–2422 (2017)

    Article  Google Scholar 

  22. Sarioglu, E., Choi, H.-A., Yadav, K.: Clinical report classification using natural language processing and topic modeling. In: The 11th International Conference on Machine Learning and Applications, vol. 2, pp. 204–209 (2012)

    Google Scholar 

  23. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. (2018)

    Google Scholar 

  24. Wang, L.L., et al.: CORD-19: the COVID-19 open research dataset. In: 1st Workshop on NLP for COVID-19 at ACL 2020, vol. 1, pp. 1–12 (2020)

    Google Scholar 

  25. Guixian, X., Meng, Y., Chen, Z., Qiu, X., Wang, C., Yao, H.: Research on topic detection and tracking for online news texts. IEEE Access 7, 58407–58418 (2019)

    Article  Google Scholar 

  26. Zhang, A., Zhu, J., Zhang, B.: Sparse online topic models. In: The 22nd International World Wide Web Conference (WWW 2013), pp. 1489–1500 (2013)

    Google Scholar 

  27. Zhang, R., Pakhomov, S., Gladding, S., Aylward, M., Borman-Shoap, E., Melton, G.: Automated assessment of medical training evaluation text. In: AMIA Annual Symposium Proceedings, vol. 2012, pp. 1459–68 (2012)

    Google Scholar 

  28. Zhu, J., Xing, E.P.: Sparse topical coding. In: The 27th Conference on Uncertainty in Artificial Intelligence (UAI 2011), pp. 831–838 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, A., Esmaili, N., Piccardi, M. (2022). A Temperature-Modified Dynamic Embedded Topic Model. In: Park, L.A.F., et al. Data Mining. AusDM 2022. Communications in Computer and Information Science, vol 1741. Springer, Singapore. https://doi.org/10.1007/978-981-19-8746-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8746-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8745-8

  • Online ISBN: 978-981-19-8746-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics