Skip to main content

Nanotechnology in Dental Implantology

  • Chapter
  • First Online:
Nanomaterials in Dental Medicine

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 349 Accesses

Abstract

Nanotechnology can be employed in changing the implant surface chemistry and topography which can in turn affect osteointegration, the most crucial aspect for implant success. Currently, implants are primarily fabricated from titanium, titanium alloys, and ceramic based materials such as zirconia. After fabrication with these primary materials, the topography of the implant surfaces can then be effectively modified using various physical and chemical methods. Physical methods commonly employed include plasma spraying, sputtering, ion implantation, and titanium dioxide coatings. Lasers and UV photofunctionalisation have also been employed to physically alter the surface characteristics and augment the biological activity at the implant interface. In addition to these physical methods, chemical methods such as anodisation, acid treatment with sulfuric acid or nitric acid, alkali treatment with sodium or potassium hydroxide, sol–gel method, chemical vapor deposition or a combination of these methods can also be successfully used. The quality of osseointegration of such nanomodified implants has to be assessed using in vivo models. While more research is definitely required, nanotechnology offers exciting new frontiers in developing better dental implants and combining nanotechnology with other cutting-edge fields such as tissue engineering that can prove to be exciting and in the long run provide optimum clinical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pye AD, Lockhart DE, Dawson MP, Murray CA, Smith AJ (2009) A review of dental implants and infection. J Hosp Infect 72(2):104–110

    Article  CAS  Google Scholar 

  2. Christenson EM, Anseth KS, van den Beucken JJ, Chan CK, Ercan B, Jansen JA, Laurencin CT, Li WJ, Murugan R, Nair LS, Ramakrishna S, Tuan RS, Webster TJ, Mikos AG (2007) Nanobiomaterial applications in orthopedics. J Orthop Res 25(1):11–22

    Article  CAS  Google Scholar 

  3. Lavenus S, Ricquier JC, Louarn G, Layrolle P (2010) Cell interaction with nanopatterned surface of implants. Nanomedicine (Lond) 5(6):937–947

    Article  CAS  Google Scholar 

  4. Ercan B, Taylor E, Alpaslan E, Webster TJ (2011) Diameter of titanium nanotubes influences anti-bacterial efficacy. Nanotechnology 22(29):295102

    Article  Google Scholar 

  5. Kummer KM, Taylor EN, Durmas NG, Tarquinio KM, Ercan B, Webster TJ (2013) Effects of different sterilization techniques and varying anodized TiO2 nanotube dimensions on bacteria growth. J Biomed Mater Res B Appl Biomater 101(5):677–688

    Article  Google Scholar 

  6. Zhang H, Sun Y, Tian A, Xue XX, Wang L, Alquhali A, Bai X (2013) Improved antibacterial activity and biocompatibility on vancomycin-loaded TiO2 nanotubes: in vivo and in vitro studies. Int J Nanomed 8:4379–4389

    Article  Google Scholar 

  7. Cordeiro JM, Barão VAR (2017) Is there scientific evidence favoring the substitution of commercially pure titanium with titanium alloys for the manufacture of dental implants? Mater Sci Eng C Mater Biol Appl 1(71):1201–1215

    Article  Google Scholar 

  8. Osman RB, Swain MV (2015) A critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials (Basel) 8(3):932–958

    Article  CAS  Google Scholar 

  9. Carinci F, Pezzetti F, Volinia S, Francioso F, Arcelli D, Farina E, Piattelli A (2004) Zirconium oxide: analysis of MG63 osteoblast-like cell response by means of a microarray technology. Biomaterials 25(2):215–228

    Article  CAS  Google Scholar 

  10. Chevalier J (2006) What future for zirconia as a biomaterial? Biomaterials 27(4):535–543

    Article  CAS  Google Scholar 

  11. Katunar MR, Gomez Sanchez A, Santos Coquillat A, Civantos A, Martinez Campos E, Ballarre J, Vico T, Baca M, Ramos V, Cere S (2017) In vitro and in vivo characterization of anodised zirconium as a potential material for biomedical applications. Mater Sci Eng C Mater Biol Appl 1(75):957–968

    Google Scholar 

  12. Sartoretto SC, Calasans-Maia J, Resende R, Câmara E, Ghiraldini B, Barbosa Bezerra FJ, Granjeiro JM, Calasans-Maia MD (2020) The influence of nanostructured hydroxyapatite surface in the early stages of osseointegration: a multiparameter animal study in low-density bone. Int J Nanomed 10(15):8803–8817

    Google Scholar 

  13. Ono D, Jimbo R, Kawachi G, Ioku K, Ikeda T, Sawase T (2011) Lateral bone augmentation with newly developed β-tricalcium phosphate block: an experimental study in the rabbit mandible. Clin Oral Implants Res 22(12):1366–1371

    Article  Google Scholar 

  14. Bao L, Liu J, Shi F, Jiang Y, Liu G (2014) Preparation and characterization of TiO2 and Si-doped octacalcium phosphate composite coatings on zirconia ceramics (Y-TZP) for dental implant applications. Appl Surf Sci 30(290):48–52

    Article  Google Scholar 

  15. Stefanic M, Krnel K, Pribosic I, Kosmac T (2012) Rapid biomimetic deposition of octacalcium phosphate coatings on zirconia ceramics (Y-TZP) for dental implant applications. Appl Surf Sci 258(10):4649–4656

    Article  CAS  Google Scholar 

  16. Joy-anne NO, Su Y, Lu X, Kuo PH, Du J, Zhu D (2019) Bioactive glass coatings on metallic implants for biomedical applications. Bioactive Mater 1(4):261–270

    Google Scholar 

  17. Rasouli R, Barhoum A, Uludag H (2018) A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance. Biomater Sci 6(6):1312–1338

    Article  CAS  Google Scholar 

  18. Dalby MJ, Riehle MO, Johnstone HJ, Affrossman S, Curtis AS (2002) Polymer-demixed nanotopography: control of fibroblast spreading and proliferation. Tissue Eng 8(6):1099–1108

    Article  CAS  Google Scholar 

  19. Zheng Y, Li J, Liu X, Sun J (2012) Antimicrobial and osteogenic effect of Ag-implanted titanium with a nanostructured surface. Int J Nanomed 7:875

    CAS  Google Scholar 

  20. Pachauri P, Bathala LR, Sangur R (2014) Techniques for dental implant nanosurface modifications. J Adv Prosthodont 6(6):498–504

    Article  Google Scholar 

  21. Tomsia AP, Launey ME, Lee JS, Mankani MH, Wegst UG, Saiz E (2011) Nanotechnology approaches for better dental implants. Int J Oral Maxillofac Implants 26(Suppl):25

    Google Scholar 

  22. Botticelli D, Lang NP (2017) Dynamics of osseointegration in various human and animal models-a comparative analysis. Clin Oral Implant Res 28(6):742–748

    Article  Google Scholar 

  23. Kulkarni M, Mazare A, Schmuki P, Iglič A (2014) Biomaterial surface modification of titanium and titanium alloys for medical applications. Nanomedicine 111:111

    Google Scholar 

  24. Curtis A, Wilkinson C (2001) Nantotechniques and approaches in biotechnology. Trends Biotechnol 19(3):97–101

    Article  CAS  Google Scholar 

  25. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CD, Oreffo RO (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6(12):997–1003

    Article  CAS  Google Scholar 

  26. Anselme K, Bigerelle M (2006) Statistical demonstration of the relative effect of surface chemistry and roughness on human osteoblast short-term adhesion. J Mater Sci Mater Med 17(5):471–479

    Article  CAS  Google Scholar 

  27. Jandt KD, Watts DC (2020) Nanotechnology in dentistry: present and future perspectives on dental nanomaterials. Dental Mater

    Google Scholar 

  28. Zhang Y, Gulati K, Li Z, Di P, Liu Y (2021) Dental implant nano-engineering: advances, limitations and future directions. Nanomaterials 11(10):2489

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biju Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, B., Ramesh, A. (2023). Nanotechnology in Dental Implantology. In: Thomas, S., Baiju, R.M. (eds) Nanomaterials in Dental Medicine. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-8718-2_9

Download citation

Publish with us

Policies and ethics