Skip to main content

Nanocomposites and Other Restorative Materials

  • Chapter
  • First Online:
Nanomaterials in Dental Medicine

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

Restorative dental materials are those materials that can be used to restore dental tissue lost caused by trauma, tumor, or caries. Some restorative materials that are composed of two or more different types of materials and contain nanoparticles are called nanocomposites, such as nano glass ionomers and resin-based composites. Because human bone and teeth consist of an inorganic calcium phosphate compound, mainly hydroxyapatite, most nanocomposites and other restorative materials are based on calcic chemicals or contain calcic nanofillers, or use calcic compound as a modifier. This chapter introduces the clinically commonly used nanocomposites and other restorative materials from the perspective of material science, including glass ionomers, resin-based composites, and inorganic-based cement materials such as calcium silicate-based cement, calcium phosphate cement, and calcium sulfate-based cement. For each kind of these materials, the composition, properties, strengths and limitations, research progress, as well as challenges for the future are presented. The methods to improve the mechanical properties, biological properties or other functions of these materials are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicholson JW, Sidhu SK, Czarnecka B (2020) Enhancing the mechanical properties of glass-ionomer dental cements: a review. Materials 13.https://doi.org/10.3390/ma13112510

  2. Nicholson JW (2016) Adhesion of glass-ionomer cements to teeth: a review. Int J Adhes Adhes 69:33–38. https://doi.org/10.1016/j.ijadhadh.2016.03.012

    Article  CAS  Google Scholar 

  3. Li KY et al (2020) Fluorinated montmorillonite and 3YSZ as the inorganic fillers in fluoride-releasing and rechargeable dental composition resin. Polymers 12. https://doi.org/10.3390/polym12010223

  4. Menezes-Silva R et al (2019) Mechanical and optical properties of conventional restorative glass-ionomer cements—a systematic review. J Appl Oral Sci 27. https://doi.org/10.1590/1678-7757-2018-0357

  5. Karimi M, Hesaraki S, Alizadeh M, Kazemzadeh A (2019) Effect of synthetic amorphous calcium phosphate nanoparticles on the physicochemical and biological properties of resin-modified glass ionomer cements. Mater Sci Eng C Mater Biol Appl 98:227–240. https://doi.org/10.1016/j.msec.2018.12.129

    Article  CAS  Google Scholar 

  6. Barandehfard E et al (2016) The addition of synthesized hydroxyapatite and fluorapatite nanoparticles to a glass-ionomer cement for dental restoration and its effects on mechanical properties. Ceram Int 42:17866–17875. https://doi.org/10.1016/j.ceramint.2016.08.122

    Article  CAS  Google Scholar 

  7. Barandehfard F et al (2019) The evaluation of the mechanical characteristics of the synthesized glass-ionomer cements (GICs): the effect of hydroxyapatite and fluorapatite nanoparticles and glass powders. J Aust Ceram Soc 55:507–517. https://doi.org/10.1007/s41779-018-0257-5

    Article  CAS  Google Scholar 

  8. Moheet IA et al (2018) Evaluation of mechanical properties and bond strength of nano-hydroxyapatite-silica added glass ionomer cement. Ceram Int 44:9899–9906. https://doi.org/10.1016/j.ceramint.2018.03.010

    Article  CAS  Google Scholar 

  9. Moheet IA et al (2019) Microleakage evaluation of novel nano-hydroxyapatite-silica glass ionomer cement. J Int Oral Health 11:357–362. https://doi.org/10.4103/jioh.jioh_132_19

    Article  Google Scholar 

  10. Najeeb S et al (2016) Modifications in glass ionomer cements: nano-sized fillers and bioactive nanoceramics. Int J Mol Sci 17. https://doi.org/10.3390/ijms17071134

  11. Rodrigues da Silva ME et al (2019) Incorporation of chlorhexidine and nano-sized sodium trimetaphosphate into a glass-ionomer cement: effect on mechanical and microbiological properties and inhibition of enamel demineralization. J Dent 84:81–88. https://doi.org/10.1016/j.jdent.2019.04.001

  12. Enan ET, Ashour AA, Basha S, Felemban NH, Gad El-Rab SMF (2021) Antimicrobial activity of biosynthesized silver nanoparticles, amoxicillin, and glass-ionomer cement against Streptococcus mutans and Staphylococcus aureus. Nanotechnology 32. https://doi.org/10.1088/1361-6528/abe577

  13. Chen J et al (2020) Antibacterial and mechanical properties of reduced graphene-silver nanoparticle nanocomposite modified glass ionomer cements. J Dent 96. https://doi.org/10.1016/j.jdent.2020.103332

  14. Bin Qasim SS, Ali D, Soliman MS, Zafiropoulos G-G (2021) The effect of chitosan derived silver nanoparticles on mechanical properties, color stability of glass ionomer luting cements. Mater Res Exp 8. https://doi.org/10.1088/2053-1591/ac1cd5

  15. Menezes-Silva R et al (2019) Effects of the reinforced cellulose nanocrystals on glass-ionomer cements. Dent Mater 35:564–573. https://doi.org/10.1016/j.dental.2019.01.006

    Article  CAS  Google Scholar 

  16. Valanezhad A et al (2016) Modification of resin modified glass ionomer cement by addition of bioactive glass nanoparticles. J Mater Sci Mater Med 27. https://doi.org/10.1007/s10856-015-5614-0

  17. Moshaverinia M, Borzabadi-Farahani A, Sameni A, Moshaverinia A, Ansari S (2016) Effects of incorporation of nano-fluorapatite particles on microhardness, fluoride releasing properties, and biocompatibility of a conventional glass ionomer cement (GIC). Dent Mater J 35:817–821. https://doi.org/10.4012/dmj.2015-437

    Article  CAS  Google Scholar 

  18. Hsu S-H et al (2012) Biphenyl liquid crystalline epoxy resin as a low-shrinkage resin-based dental restorative nanocomposite. Acta Biomater 8:4151–4161. https://doi.org/10.1016/j.actbio.2012.07.030

    Article  CAS  Google Scholar 

  19. Ardestani SS et al (2021) Effect of the incorporation of silica blow spun nanofibers containing silver nanoparticles (SiO2/Ag) on the mechanical, physicochemical, and biological properties of a low-viscosity bulk-fill composite resin. Dent Mater 37:1615–1629. https://doi.org/10.1016/j.dental.2021.08.012

    Article  CAS  Google Scholar 

  20. Rodriguez HA, Casanova H (2018) Effects of silica nanoparticles and silica-zirconia nanoclusters on tribological properties of dental resin composites. J Nanotechnol 2018. https://doi.org/10.1155/2018/7589051

  21. Mirsasaani SS, Ghomi F, Hemati M, Tavasoli T (2013) Measurement of solubility and water sorption of dental nanocomposites light cured by Argon laser. IEEE Trans Nanobiosci 12:41–46. https://doi.org/10.1109/tnb.2012.2229468

    Article  Google Scholar 

  22. Yang Q, Lin YH, Li M, Shen Y, Nan CW (2016) Characterization of mesoporous silica nanoparticle composites at low filler content. J Compos Mater 50:715–722. https://doi.org/10.1177/0021998315580830

    Article  CAS  Google Scholar 

  23. Tavassoli Hojati S et al (2013) Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dent Mater 29:495–505. https://doi.org/10.1016/j.dental.2013.03.011

  24. Cao WW et al (2017) Development of a novel resin-based dental material with dual biocidal modes and sustained release of Ag+ ions based on photocurable core-shell AgBr/cationic polymer nanocomposites. J Mater Sci-Mater Med 28. https://doi.org/10.1007/s10856-017-5918-3

  25. Dias HB, Bernardi MIB, Bauab TM, Hernandes AC, Rastelli AND (2019) Titanium dioxide and modified titanium dioxide by silver nanoparticles as an anti biofilm filler content for composite resins. Dent Mater 35:E36–E46. https://doi.org/10.1016/j.dental.2018.11.002

    Article  CAS  Google Scholar 

  26. Weir MD et al (2012) Nanocomposite containing CaF2 nanoparticles: thermal cycling, wear and long-term water-aging. Dent Mater 28:642–652. https://doi.org/10.1016/j.dental.2012.02.007

    Article  CAS  Google Scholar 

  27. Dai Q et al (2021) Effect of co-precipitation plus spray-drying of nano-CaF2 on mechanical and fluoride properties of nanocomposite. Dent Mater 37:1009–1019. https://doi.org/10.1016/j.dental.2021.03.020

    Article  CAS  Google Scholar 

  28. Zhao SN et al (2019) Design and efficient fabrication of micro-sized clusters of hydroxyapatite nanorods for dental resin composites. J Mater Sci 54:3878–3892. https://doi.org/10.1007/s10853-018-3125-3

    Article  CAS  Google Scholar 

  29. Zhang W-Y, Yuan Y-B, Chen Q-H, Xiao Y-H, Li X-X (2011) Influence of nano-silica content on flexural properties of the aluminum borate whisker and silica filler composite resins. Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology 29:195–198

    Google Scholar 

  30. Barghamadi H, Atai M, Imani M, Esfandeh M (2015) Effects of nanoparticle size and content on mechanical properties of dental nanocomposites: experimental versus modeling. Iran Polym J 24:837–848. https://doi.org/10.1007/s13726-015-0369-5

    Article  CAS  Google Scholar 

  31. Miao XL, Zhu MF, Li YG, Zhang QH, Wang HZ (2012) Synthesis of dental resins using diatomite and nano-sized SiO2 and TiO2. Prog Nat Sci-Mater Int 22:94–99. https://doi.org/10.1016/j.pnsc.2012.03.006

    Article  Google Scholar 

  32. Yang DL et al (2021) Antibacterial activity and reinforcing effect of SiO2-ZnO complex cluster fillers for dental resin composites. Biomater Sci 9:1795–1804. https://doi.org/10.1039/d0bm01834a

    Article  CAS  Google Scholar 

  33. Aminoroaya A et al (2021) A review of dental composites: challenges, chemistry aspects, filler influences, and future insights. Compos Part B Eng 216. https://doi.org/10.1016/j.compositesb.2021.108852

  34. Xu HH, Moreau JL, Sun L, Chow LC (2011) Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent Mater 27:762–769. https://doi.org/10.1016/j.dental.2011.03.016

    Article  CAS  Google Scholar 

  35. Melo MAS, Weir MD, Rodrigues LKA, Xu HHK (2013) Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model. Dent Mater 29:231–240. https://doi.org/10.1016/j.dental.2012.10.010

    Article  CAS  Google Scholar 

  36. Li F, Wang P, Weir MD, Fouad AF, Xu HHK (2014) Evaluation of antibacterial and remineralizing nanocomposite and adhesive in rat tooth cavity model. Acta Biomater 10:2804–2813. https://doi.org/10.1016/j.actbio.2014.02.033

    Article  CAS  Google Scholar 

  37. Al-Dulaijan YA et al (2018) Novel rechargeable calcium phosphate nanocomposite with antibacterial activity to suppress biofilm acids and dental caries. J Dent 72:44–52. https://doi.org/10.1016/j.jdent.2018.03.003

    Article  CAS  Google Scholar 

  38. Bhadila G et al (2020) Bioactive low-shrinkage-stress nanocomposite suppresses S. mutans biofilm and preserves tooth dentin hardness. Acta Biomaterialia 114:146–157. https://doi.org/10.1016/j.actbio.2020.07.057

  39. Liu FW, Jiang XZ, Zhang QH, Zhu MF (2014) Strong and bioactive dental resin composite containing poly(Bis-GMA) grafted hydroxyapatite whiskers and silica nanoparticles. Compos Sci Technol 101:86–93. https://doi.org/10.1016/j.compscitech.2014.07.001

    Article  CAS  Google Scholar 

  40. Al-Hezaimi K et al (2006) Antibacterial effect of two mineral trioxide aggregate (MTA) preparations against Enterococcus faecalis and Streptococcus sanguis in vitro. J Endod 32:1053–1056. https://doi.org/10.1016/j.joen.2006.06.004

    Article  Google Scholar 

  41. Chen Y-W et al (2016) The ionic products from mineral trioxide aggregate–induced odontogenic differentiation of dental pulp cells via activation of the Wnt/β-catenin signaling pathway. J Endod

    Google Scholar 

  42. Flores-Ledesma A et al (2020) Hydration products and bioactivity of an experimental MTA-like cement modified with wollastonite and bioactive glass. Ceram Int 46:15963–15971. https://doi.org/10.1016/j.ceramint.2020.03.146

    Article  CAS  Google Scholar 

  43. Rathinam E et al (2016) Gene expression profiling and molecular signaling of various cells in response to tricalcium silicate cements: a systematic review. J Endod 42:1713–1725. https://doi.org/10.1016/j.joen.2016.08.027

    Article  Google Scholar 

  44. Ren X, Zhang W, Ye J (2017) FTIR study on the polymorphic structure of tricalcium silicate. Cem Concr Res 99:129–136. https://doi.org/10.1016/j.cemconres.2016.11.021

    Article  CAS  Google Scholar 

  45. Plank J (2020) On the correct chemical nomenclature of C3S, tricalcium oxy silicate. Cem Concr Res 130. https://doi.org/10.1016/j.cemconres.2019.105957

  46. Cuesta A et al (2018) Multiscale understanding of tricalcium silicate hydration reactions. Sci Rep 8. https://doi.org/10.1038/s41598-018-26943-y

  47. Joseph S, Bishnoi S, Van Balen K, Cizer Ö (2018) Effect of the densification of C-S-H on hydration kinetics of tricalcium silicate. J Am Ceram Soc 101:2438–2449. https://doi.org/10.1111/jace.15390

    Article  CAS  Google Scholar 

  48. Li X, Ouzia A, Scrivener K (2018) Laboratory synthesis of C3S on the kilogram scale. Cem Concr Res 108:201–207. https://doi.org/10.1016/j.cemconres.2018.03.019

    Article  CAS  Google Scholar 

  49. Liu W, Zhai D, Huan Z, Wu C, Chang J (2015) Novel tricalcium silicate/magnesium phosphate composite bone cement having high compressive strength, in vitro bioactivity and cytocompatibility. Acta Biomater 21:217–227. https://doi.org/10.1016/j.actbio.2015.04.012

    Article  CAS  Google Scholar 

  50. Dai R et al (2018) Mineralization and optical properties of Eu3+-doped tricalcium silicate soaked in dilute K2HPO4 aqueous solution. Opt Mater 85:32–40. https://doi.org/10.1016/j.optmat.2018.08.013

    Article  CAS  Google Scholar 

  51. Tan Y-N, Chen W-J, Liu Y, Liu Y-J (2020) Preparation of tricalcium silicate and investigation of hydrated cement. J CentL South Univ 27:3227–3238. https://doi.org/10.1007/s11771-020-4542-4

    Article  CAS  Google Scholar 

  52. Wu M et al (2018) A novel and facile route for synthesis of fine tricalcium silicate powders. Mater Lett 227:187–190. https://doi.org/10.1016/j.matlet.2018.05.029

    Article  CAS  Google Scholar 

  53. Gaki A, Chrysafi R, Kakali G (2007) Chemical synthesis of hydraulic calcium aluminate compounds using the Pechini technique. J Eur Ceram Soc 27:1781–1784. https://doi.org/10.1016/j.jeurceramsoc.2006.05.002

    Article  CAS  Google Scholar 

  54. Voicu G, Ghiţulică CD, Andronescu E (2012) Modified Pechini synthesis of tricalcium aluminate powder. Mater Charact 73:89–95. https://doi.org/10.1016/j.matchar.2012.08.002

    Article  CAS  Google Scholar 

  55. Comparing three methods for the synthesis of calcium silicate-download.PDF

    Google Scholar 

  56. Li X et al (2017) Re-mineralizing dentin using an experimental tricalcium silicate cement with biomimetic analogs. Dent Mater 33:505–513. https://doi.org/10.1016/j.dental.2017.02.003

    Article  CAS  Google Scholar 

  57. Meng W et al (2019) Fast-setting and anti-washout tricalcium silicate/disodium hydrogen phosphate composite cement for dental application. ScienceDirect. Ceram Int 45:24182–24192

    Google Scholar 

  58. Giraud T, Jeanneau C, Bergmann M, Laurent P, About I (2018) Tricalcium silicate capping materials modulate pulp healing and inflammatory activity in vitro. J Endod 44:1686–1691. https://doi.org/10.1016/j.joen.2018.06.009

    Article  Google Scholar 

  59. Li X et al (2018) Experimental tricalcium silicate cement induces reparative dentinogenesis. Dent Mater 34:1410–1423. https://doi.org/10.1016/j.dental.2018.06.016

    Article  CAS  Google Scholar 

  60. Lin Q et al (2011) Preparation and in vitro bioactivity of zinc incorporating tricalium silicate. Mater Sci Eng, C 31:629–636. https://doi.org/10.1016/j.msec.2010.11.021

    Article  CAS  Google Scholar 

  61. Eltohamy M, Kundu B, Moon J, Lee HY, Kim HW (2018) Anti-bacterial zinc-doped calcium silicate cements: bone filler. Ceram Int 44:13031–13038. https://doi.org/10.1016/j.ceramint.2018.04.122

    Article  CAS  Google Scholar 

  62. Liu WC et al (2020) Study on strontium doped tricalcium silicate synthesized through sol-gel process. Mater Sci Eng C Mater Biol Appl 108:110431. https://doi.org/10.1016/j.msec.2019.110431

    Article  CAS  Google Scholar 

  63. Zhang Y et al (2020) Preparation and characterization of iron-doped tricalcium silicate-based bone cement as a bone repair material. Materials (Basel) 13:3670. https://doi.org/10.3390/ma13173670

  64. Peng XY et al (2019) La-doped mesoporous calcium silicate/chitosan scaffolds for bone tissue engineering. Biomater Sci 7:1565–1573. https://doi.org/10.1039/c8bm01498a

    Article  CAS  Google Scholar 

  65. Wiltbank KB, Schwartz SA, Schindler WG (2007) Effect of selected accelerants on the physical properties of mineral trioxide aggregate and portland cement. J Endod 33:1235–1238

    Article  Google Scholar 

  66. Zhou Y et al (2018) Fast setting tricalcium silicate/magnesium phosphate premixed cement for root canal filling. Ceram Int 44:3015–3023. https://doi.org/10.1016/j.ceramint.2017.11.058

    Article  CAS  Google Scholar 

  67. Wu M et al (2019) Fast-setting and anti-washout tricalcium silicate/disodium hydrogen phosphate composite cement for dental application. Ceram Int 45:24182–24192. https://doi.org/10.1016/j.ceramint.2019.08.127

    Article  CAS  Google Scholar 

  68. Chung R-J, Wang A-N, Lin K-H, Su Y-C (2017) Study of a novel hybrid bone cement composed of γ-polyglutamic acid and tricalcium silicate. Ceram Int 43:S814–S822. https://doi.org/10.1016/j.ceramint.2017.05.310

    Article  CAS  Google Scholar 

  69. Zhang Y et al (2017) A novel bioactive vaterite-containing tricalcium silicate bone cement by self hydration synthesis and its biological properties. Mater Sci Eng C Mater Biol Appl 79:23–29. https://doi.org/10.1016/j.msec.2017.05.025

    Article  CAS  Google Scholar 

  70. Kum KY et al (2014) Trace metal contents of three tricalcium silicate materials: MTA Angelus, Micro Mega MTA and Bioaggregate. Int Endod J 47:704–710

    Article  CAS  Google Scholar 

  71. Yang W-C et al (2021) Tooth discoloration and the effects of internal bleaching on the novel endodontic filling material SavDen® MTA. J Formos Med Assoc 120:476–482. https://doi.org/10.1016/j.jfma.2020.06.016

    Article  CAS  Google Scholar 

  72. Queiroz MB et al (2021) Physicochemical, biological, and antibacterial evaluation of tricalcium silicate-based reparative cements with different radiopacifiers. Dent Mater Off Publ Acad Dent Mater 37:311–320. https://doi.org/10.1016/j.dental.2020.11.014

    Article  CAS  Google Scholar 

  73. Antonijevic D et al (2015) Addition of a fluoride-containing radiopacifier improves micromechanical and biological characteristics of modified calcium silicate cements. J Endod 41:2050–2057. https://doi.org/10.1016/j.joen.2015.09.008

    Article  Google Scholar 

  74. Bosso-Martelo R et al (2016) Physicochemical properties of calcium silicate cements associated with microparticulate and nanoparticulate radiopacifiers. Clin Oral Investig 20:83–90. https://doi.org/10.1007/s00784-015-1483-7

    Article  Google Scholar 

  75. Queiroz MB et al (2021) Development and evaluation of reparative tricalcium silicate-ZrO2-biosilicate composites. J Biomed Mater Res B Appl Biomater 109:468–476. https://doi.org/10.1002/jbm.b.34714

    Article  CAS  Google Scholar 

  76. Wu M, Wang T, Zhang Y (2021) Premixed tricalcium silicate/sodium phosphate dibasic cements for root canal filling. Mater Chem Phys 257. https://doi.org/10.1016/j.matchemphys.2020.123682

  77. Hughes E, Yanni T, Jamshidi P, Grover LM (2014) Inorganic cements for biomedical application: calcium phosphate, calcium sulphate and calcium silicate. Adv Appl Ceram 114:65–76. https://doi.org/10.1179/1743676114y.0000000219

    Article  Google Scholar 

  78. Carrodeguas RG, De Aza S (2011) alpha-Tricalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater 7:3536–3546. https://doi.org/10.1016/j.actbio.2011.06.019

    Article  CAS  Google Scholar 

  79. Yashima M, Sakai A (2003) High-temperature neutron powder diffraction study of the structural phase transition between α and α ′ phases in tricalcium phosphate Ca 3 (PO 4) 2. Chem Phys Lett 372:779–783

    Article  CAS  Google Scholar 

  80. Nasiri-Tabrizi B, Fa Hami A (2013) Crystallization behavior of nanostructured amorphous tricalcium phosphate under thermal treatment. Mater Lett 106:396–400

    Google Scholar 

  81. Döbelin N et al (2008) Phase evolution of thermally treated amorphous tricalcium phosphate nanoparticles. Key Eng Mater 396–398:595–598. https://doi.org/10.4028/www.scientific.net/KEM.396-398.595

    Article  Google Scholar 

  82. Camire CL, Saint-Jean SJ, Hansen S, Mccarthy I, Lidgren L (2005) Hydration characteristics of alpha-tricalcium phosphates: Comparison of preparation routes. J Appl Biomater Biomech Jabb 3:106

    CAS  Google Scholar 

  83. Sinusaite L et al (2019) Controllable synthesis of tricalcium phosphate (TCP) polymorphs by wet precipitation: effect of washing procedure. Ceram Int 45:12423–12428. https://doi.org/10.1016/j.ceramint.2019.03.174

    Article  CAS  Google Scholar 

  84. Sinusaite L et al (2021) Effect of Mn doping on hydrolysis of low-temperature synthesized metastable alpha-tricalcium phosphate. Ceram Int 47:12078–12083. https://doi.org/10.1016/j.ceramint.2021.01.052

    Article  CAS  Google Scholar 

  85. Shi H et al (2019) Synergistic effects of citric acid—sodium alginate on physicochemical properties of α-tricalcium phosphate bone cement. Ceram Int 45:2146–2152. https://doi.org/10.1016/j.ceramint.2018.10.124

    Article  CAS  Google Scholar 

  86. Chen H et al (2020) An antibacterial and injectable calcium phosphate scaffold delivering human periodontal ligament stem cells for bone tissue engineering. RSC Adv 10:40157–40170. https://doi.org/10.1039/d0ra06873j

    Article  CAS  Google Scholar 

  87. Wang CW, Chiang TY, Chang HC, Ding SJ (2014) Physicochemical properties and osteogenic activity of radiopaque calcium silicate-gelatin cements. J Mater Sci Mater Med 25:2193–2203. https://doi.org/10.1007/s10856-014-5258-5

    Article  CAS  Google Scholar 

  88. Gallo M et al (2019) Effect of grain orientation and magnesium doping on beta-tricalcium phosphate resorption behavior. Acta Biomater 89:391–402. https://doi.org/10.1016/j.actbio.2019.02.045

    Article  CAS  Google Scholar 

  89. Konishi T, Nagano Y, Maegawa M, Lim PN, Thian ES (2019) Effect of copper substitution on the local chemical structure and dissolution property of copper-doped beta-tricalcium phosphate. Acta Biomater 91:72–81. https://doi.org/10.1016/j.actbio.2019.04.040

    Article  CAS  Google Scholar 

  90. Gungor Koc S (2019) Synthesis and characterization of strontium and chlorine co-doped tricalcium phosphate. Mater Lett 248:69–72. https://doi.org/10.1016/j.matlet.2019.03.136

    Article  CAS  Google Scholar 

  91. Di Filippo MF et al (2020) A radiopaque calcium phosphate bone cement with long-lasting antibacterial effect: from paste to injectable formulation. Ceram Int 46:10048–10057. https://doi.org/10.1016/j.ceramint.2019.12.272

    Article  CAS  Google Scholar 

  92. Sinusaite L et al (2019) Effect of Mn doping on the low-temperature synthesis of tricalcium phosphate (TCP) polymorphs. J Eur Ceram Soc 39:3257–3263. https://doi.org/10.1016/j.jeurceramsoc.2019.03.057

    Article  CAS  Google Scholar 

  93. Yuan Z et al (2021) Synthesis and properties of Sr(2+) doping alpha-tricalcium phosphate at low temperature. J Appl Biomater Funct Mater 19:2280800021996999. https://doi.org/10.1177/2280800021996999

    Article  CAS  Google Scholar 

  94. Fukuda N, Tsuru K, Mori Y, Ishikawa K (2017) Effect of citric acid on setting reaction and tissue response to beta-TCP granular cement. Biomed Mater 12:015027. https://doi.org/10.1088/1748-605X/aa5aea

    Article  Google Scholar 

  95. Eddy Tsuchiya A, Tsuru K, Ishikawa K (2018) Fabrication of self-setting beta-TCP granular cement using beta-TCP granules and sodium hydrogen sulfate solution. J Biomater Appl 33:630–636. https://doi.org/10.1177/0885328218808015

  96. Wei LJ, Shariff KA, Momin SA, Bakar MHA, Cahyanto A (2021) Self-setting β-tricalcium phosphate granular cement at physiological body condition: effect of citric acid concentration as an inhibitor. J Aust Ceram Soc 57:687–696. https://doi.org/10.1007/s41779-021-00575-4

    Article  CAS  Google Scholar 

  97. Lee HJ, Kim B, Padalhin AR, Lee BT (2019) Incorporation of chitosan-alginate complex into injectable calcium phosphate cement system as a bone graft material. Mater Sci Eng C Mater Biol Appl 94:385–392. https://doi.org/10.1016/j.msec.2018.09.039

    Article  CAS  Google Scholar 

  98. Kim Y et al (2021) Effects of zirconia additives on β-tricalcium-phosphate cement for high strength and high injectability. Ceram Int 47:1882–1890. https://doi.org/10.1016/j.ceramint.2020.09.017

    Article  CAS  Google Scholar 

  99. Arahira T, Maruta M, Matsuya S (2017) Characterization and in vitro evaluation of biphasic alpha-tricalcium phosphate/beta-tricalcium phosphate cement. Mater Sci Eng C Mater Biol Appl 74:478–484. https://doi.org/10.1016/j.msec.2016.12.049

    Article  CAS  Google Scholar 

  100. Radovanović Ž et al (2014) Antimicrobial activity and biocompatibility of Ag+- and Cu2+-doped biphasic hydroxyapatite/α-tricalcium phosphate obtained from hydrothermally synthesized Ag+- and Cu2+-doped hydroxyapatite. Appl Surf Sci 307:513–519. https://doi.org/10.1016/j.apsusc.2014.04.066

    Article  CAS  Google Scholar 

  101. Singh NB, Middendorf B (2007) Calcium sulphate hemihydrate hydration leading to gypsum crystallization. Prog Cryst Growth Charact Mater 53:57–77. https://doi.org/10.1016/j.pcrysgrow.2007.01.002

    Article  CAS  Google Scholar 

  102. Jia C et al (2020) Distribution behavior of arsenate into alpha-calcium sulfate hemihydrate transformed from gypsum in solution. Chemosphere 255:126936. https://doi.org/10.1016/j.chemosphere.2020.126936

    Article  CAS  Google Scholar 

  103. Guan B, Ye Q, Zhang J, Lou W, Wu Z (2010) Interaction between α-calcium sulfate hemihydrate and superplasticizer from the point of adsorption characteristics, hydration and hardening process. Cem Concr Res 40:253–259. https://doi.org/10.1016/j.cemconres.2009.08.027

    Article  CAS  Google Scholar 

  104. Jung HM et al (2010) Modulation of the resorption and osteoconductivity of alpha-calcium sulfate by histone deacetylase inhibitors. Biomaterials 31:29–37. https://doi.org/10.1016/j.biomaterials.2009.09.019

    Article  CAS  Google Scholar 

  105. Kong B, Guan B, Yates MZ, Wu Z (2012) Control of alpha-calcium sulfate hemihydrate morphology using reverse microemulsions. Langmuir 28:14137–14142. https://doi.org/10.1021/la302459z

    Article  CAS  Google Scholar 

  106. Chen J et al (2013) Size-controlled preparation of alpha-calcium sulphate hemihydrate starting from calcium sulphate dihydrate in the presence of modifiers and the dissolution rate in simulated body fluid. Mater Sci Eng C Mater Biol Appl 33:3256–3262. https://doi.org/10.1016/j.msec.2013.04.007

    Article  CAS  Google Scholar 

  107. Nakagawa T, Hinze WL, Takagai Y (2020) Rapid Micelle-mediated size-controlled fabrication of calcium sulfate nanorods using silver nanoparticles. Langmuir 36:7456–7462. https://doi.org/10.1021/acs.langmuir.0c01043

    Article  CAS  Google Scholar 

  108. Dewi AH, Ana ID, Wolke J, Jansen J (2013) Behavior of plaster of Paris-calcium carbonate composite as bone substitute. A study in rats. J Biomed Mater Res A 101:2143–2150. https://doi.org/10.1002/jbm.a.34513

  109. Yang D et al (2018) Characterization of an α-calcium sulfate hemihydrates/α-tricalcium phosphate combined injectable bone cement. ACS Appl Bio Mater 1:768–776. https://doi.org/10.1021/acsabm.8b00221

    Article  CAS  Google Scholar 

  110. Kishida R, Elsheikh M, Hayashi K, Tsuchiya A, Ishikawa K (2021) Fabrication of highly interconnected porous carbonate apatite blocks based on the setting reaction of calcium sulfate hemihydrate granules. Ceram Int 47:19856–19863. https://doi.org/10.1016/j.ceramint.2021.03.324

    Article  CAS  Google Scholar 

  111. Zima A, Czechowska J, Siek D, Ślósarczyk A (2017) Influence of magnesium and silver ions on rheological properties of hydroxyapatite/chitosan/calcium sulphate based bone cements. Ceram Int 43:16196–16203. https://doi.org/10.1016/j.ceramint.2017.08.197

    Article  CAS  Google Scholar 

  112. Cai Z, Wu Z, Wan Y, Yu T, Zhou C (2021) Manipulation of the degradation behavior of calcium phosphate and calcium sulfate bone cement system by the addition of micro-nano calcium phosphate. Ceram Int 47:29213–29224. https://doi.org/10.1016/j.ceramint.2021.07.086

    Article  CAS  Google Scholar 

  113. Du M, Li Q, Chen J, Liu K, Song C (2021) Design and characterization of injectable abalone shell/calcium sulfate bone cement scaffold for bone defect repair. Chem Eng J 420. https://doi.org/10.1016/j.cej.2021.129866

  114. Chen H, Ji M, Ding Z, Yan Y (2020) Vitamin D3-loaded calcium citrate/calcium sulfate composite cement with enhanced physicochemical properties, drug release, and cytocompatibility. J Biomater Appl 34:1343–1354. https://doi.org/10.1177/0885328220904498

    Article  CAS  Google Scholar 

  115. Khatua C, Sengupta S, Kundu B, Bhattacharya D, Balla VK (2019) Enhanced strength, in vitro bone cell differentiation and mineralization of injectable bone cement reinforced with multiferroic particles. Mater Des 167. https://doi.org/10.1016/j.matdes.2019.107628

  116. Zheng Y, Xiong C, Zhang D, Zhang L (2018) In vitro bioactivity evaluation of α-calcium sulphate hemihydrate and bioactive glass composites for their potential use in bone regeneration. Bull Mater Sci 41. https://doi.org/10.1007/s12034-018-1558-6

  117. Ji M, Ding Z, Chen H, Peng H, Yan Y (2019) Design of novel organic-inorganic composite bone cements with high compressive strength, in vitro bioactivity and cytocompatibility. J Biomed Mater Res B Appl Biomater 107:2365–2377. https://doi.org/10.1002/jbm.b.34330

    Article  CAS  Google Scholar 

  118. Ji M et al (2020) Effects of tricalcium silicate/sodium alginate/calcium sulfate hemihydrate composite cements on osteogenic performances in vitro and in vivo. J Biomater Appl 34:1422–1436. https://doi.org/10.1177/0885328220907784

    Article  CAS  Google Scholar 

  119. Ding Z et al (2021) Developing a biodegradable tricalcium silicate/glucono-delta-lactone/calcium sulfate dihydrate composite cement with high preliminary mechanical property for bone filling. Mater Sci Eng C Mater Biol Appl 119:111621. https://doi.org/10.1016/j.msec.2020.111621

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanni Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tan, Y., Lyu, J. (2023). Nanocomposites and Other Restorative Materials. In: Thomas, S., Baiju, R.M. (eds) Nanomaterials in Dental Medicine. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-8718-2_4

Download citation

Publish with us

Policies and ethics