Skip to main content

Leveraging Potential of Deep Learning for Remote Sensing Data: A Review

  • Conference paper
  • First Online:
Intelligent Systems and Human Machine Collaboration

Abstract

Remote sensing has witnessed impressive progress of computer vision and state of art deep learning methods on satellite imagery analysis. Image classification, semantic segmentation and object detection are the major computer vision tasks for remote sensing satellite image analysis. Most of work in literature is concentrated on utilization of optical satellite data for the aforementioned tasks. There remains a lot of potential in usage of Synthetic Aperture Radar (SAR) data and its fusion with optical data which is still at its nascent stage. This paper reviews, state of the art deep learning methods, recent research progress in Deep learning applied to remote sensing satellite image analysis, related comparative analysis, benchmark datasets and evaluation criteria. This paper provides in depth review of satellite image analysis with the cutting edge technologies and promising research directions to the budding researchers in the field of remote sensing and deep learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pagot E (2008) Systematic study of the urban postconflict change classification performance using spectral and structural features in a support vector machine. IEEE J Select Topics Appl Earth Observ Remote Sens 1:120–128. https://doi.org/10.1109/JSTARS.2008.2001154

    Article  Google Scholar 

  2. Feng W (2017) Random forest change detection method for high-resolution remote sensing images. J Surv Mapp 46(11):90–100

    Google Scholar 

  3. Li D (2014) Automatic analysis and mining of remote sensing big data. Acta Geodaetica et Cartographica Sinica 43(12):1211–1216

    Google Scholar 

  4. Li G, Jiajun L (2020) Automatic analysis and intelligent information extraction of remote sensing big data. J Phys: Conf Series 1616. 012003. https://doi.org/10.1088/1742-6596/1616/1/012003

  5. Zhu M (2019) A review of researches on deep learning in remote sensing application. J Geosci 10:1–11. https://doi.org/10.4236/iig.2019.101001

  6. Gong JY, Ji SP (2017) From photogrammetry to computer vision. Geomat Inf Sci Wuhan Univ 42:1518–1522

    Google Scholar 

  7. Jiyana Gong S (2018) Photogrammetry and Deep Learning. Acta Geodaetica et Cartographica Sinica 47:693–704

    Google Scholar 

  8. Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classifcation with deep convolutional neural networks. Commun ACM 60(6):84–90

    Article  Google Scholar 

  9. Goodfellow I, Bengio Y, Courville A, Bengio Y (2016) Deep learning, vol 1. MIT press, Cambridge

    MATH  Google Scholar 

  10. Yamashita R, Nishio M, Do RKG et al (2018) Convolutional neural networks: an overview and application in radiology. Insights Imag 9:611–629. https://doi.org/10.1007/s13244-018-0639-9

    Article  Google Scholar 

  11. Hasni A, Hanifi M, Anibou C (2020) Deep Learning for SAR image classification. Intell Syst Appl. https://doi.org/10.1007/978-3-030-29516-5_67

  12. Makantasis K, Karantzalos K, Doulamis A, Doulamis N (2015) Deep supervised learning for hyperspectral data classification through convolutional neural networks. In: Proceedings of IEEE International Geoscience Remote Sensing Symposium, Milan, Italy, pp 4959–4962

    Google Scholar 

  13. Mou L, Ghamisi P, Zhu XX (2017) Deep recurrent neural networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 55(7):3639–3655. https://doi.org/10.1109/TGRS.2016.2636241

  14. Bermúdez JD et al (2017) Evaluation of recurrent neural networks for crop recognition from multitemporal remote sensing images. In: Anais do XXVII Congresso Brasileiro de Cartografia

    Google Scholar 

  15. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets in Advances in neural information processing systems 2014:2672–2680

    Google Scholar 

  16. Kingma P, Welling M (2013) Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114

  17. Zhu XX, Montazeri S, Ali M, Hua Y, Wang Y, Mou L, Shi Y, Xu F, Bamler R (2020) Deep learning meets SAR. arXiv preprint arXiv:2006.10027

  18. Song Q, Xu F, Zhu XX, Jin YQ (2022) Learning to generate SAR images with adversarial autoencoder. IEEE Trans Geosci Remote Sens 60:1–15. Art no. 5210015. https://doi.org/10.1109/TGRS.2021.3086817

  19. Xu Q et al (2022) Synthetic aperture radar image compression based on a variational autoencoder. IEEE Geosci Remote Sens Lett 19:1–5. Art no. 4015905. https://doi.org/10.1109/LGRS.2021.3097154

  20. Ben Hamida A, Benoit A, Lambert P, Ben Amar C (2018) Generative Adversarial Network (GAN) for remote sensing images unsupervised learning. In: RFIAP 2018, AFRIF, SFPT, IEEE GRSS, Jun 2018, Marne-la-Vallée, France. ffhal-0197031

    Google Scholar 

  21. Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784

  22. Zhu JY, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision, pp 2223–2232

    Google Scholar 

  23. Liu P (2021) A review on remote sensing data fusion with generative adversarial networks (GAN). TechRxiv.Preprint

    Google Scholar 

  24. Zhao Y, Celik T, Liu N, Li H-C (2022) A comparative analysis of GAN-based methods for SAR-to-optical image translation. IEEE Geosci Remote Sens Lett. https://doi.org/10.1109/LGRS.2022.3177001

    Article  Google Scholar 

  25. Qianqian Z, Sun R. SAR image despeckling based on convolutional denoising autoencoder. https://doi.org/10.13140/RG.2.2.24936.29443

  26. Zhou Y, Shi J, Yang X, Wang C, Kumar D, Wei S, Zhang X (2019) Deep multi-scale recurrent network for synthetic aperture radar images despeckling. Remote Sens 11(21):2462. https://doi.org/10.3390/rs11212462

    Article  Google Scholar 

  27. Chang Y-L, Tan T-H, Lee W-H, Chang L, Chen Y-N, Fan K-C, Alkhaleefah M (2022) Consolidated convolutional neural network for hyperspectral image classification. Remote Sens 14:1571. https://doi.org/10.3390/rs14071571

  28. Shi C, Zhang X, Sun J, Wang L (2022) Remote sensing scene image classification based on self-compensating convolution neural network. Remote Sens 14:545. https://doi.org/10.3390/rs14030545

    Article  Google Scholar 

  29. Liu J, Zhang K, Wu S, Shi H, Zhao Y, Sun Y, Zhuang H, Fu E (2022) An investigation of a multidimensional CNN combined with an attention mechanism model to resolve small-sample problems in hyperspectral image classification. Remote Sens 14:785. https://doi.org/10.3390/rs14030785

  30. Kussul N, Lavreniuk M, Shumilo L (2020) Deep recurrent neural network for crop classification task based on Sentinel-1 and Sentinel-2 imagery. In: IGARSS 2020—2020 IEEE international geoscience and remote sensing symposium, pp 6914–6917. https://doi.org/10.1109/IGARSS39084.2020.9324699

  31. Chen J, Qiu X (2019) Equivalent complex valued deep semantic segmentation network for SAR images. In: International applied computational electromagnetics society symposium—China (ACES), pp 1–2.https://doi.org/10.23919/ACES48530.2019.9060476

  32. Liu Y, Kong Y (2021) A novel deep transfer learning method for SAR and optical fusion imagery semantic segmentation. In: IEEE international geoscience and remote sensing symposium IGARSS, pp 4059–4062.https://doi.org/10.1109/IGARSS47720.2021.9553751

  33. Pham T (2020) Semantic road segmentation using deep learning. Applying New Technology in Green Buildings (ATiGB) 2021:45–48. https://doi.org/10.1109/ATiGB50996.2021.9423307

    Article  Google Scholar 

  34. Shi C, Zhou Y, Qiu B, Guo D, Li M (2021) CloudU-Net: a deep convolutional neural network architecture for daytime and nighttime cloud images’ segmentation. IEEE Geosci Remote Sens Lett 18(10):1688–1692. https://doi.org/10.1109/LGRS.2020.3009227

  35. Morales G, Ramírez A, Telles J (2019):End-to-end cloud segmentation in high-resolution multispectral satellite imagery using deep learning. In: IEEE XXVI international conference on electronics, electrical engineering and computing (INTERCON), pp 1–4. https://doi.org/10.1109/INTERCON.2019.8853549

  36. Ren H, Yu X, Bruzzone L, Zhang Y, Zou L, Wang X (2022) A Bayesian approach to active self-paced deep learning for SAR automatic target recognition. IEEE Geosci Remote Sens Lett 19:1–5. Art no. 4005705. https://doi.org/10.1109/LGRS.2020.3036585

  37. Li D, Liang Q, Liu H, Liu Q, Liu H, Liao G (2022) A novel multidimensional domain deep learning network for SAR ship detection. IEEE Trans Geosci Remote Sens 60:1–13. Art no. 5203213. https://doi.org/10.1109/TGRS.2021.3062038

  38. Parera MV. Transformer based SAR image despeckling.arXiv:2201.09355

  39. Zhu XX et al (2021) Deep learning meets SAR: concepts, models, pitfalls, and perspectives. IEEE Geosci Remote Sens Mag 9(4):143–172. https://doi.org/10.1109/MGRS.2020.3046356

  40. Cheng G, Xie X, Han J, Guo L, Xia G-S (2020) Remote sensing image scene classification meets deep learning: challenges, methods, benchmarks, and opportunities. IEEE J Select Topics Appl Earth Observ Remote Sens 13:3735–3756. https://doi.org/10.1109/JSTARS.2020.3005403

  41. Virnodkar S, Pachghare VK, Murade S (2021) A technique to classify sugarcane crop from Sentinel-2 satellite imagery using U-Net architecture. In: Progress in advanced computing and intelligent engineering. Advances in Intelligent Systems and Computing, vol 1199. Springer, Singapore. https://doi.org/10.1007/978-981-15-6353-9_29

  42. Fırat H, Emin Asker M, Hanbay D (2022) Classification of hyperspectral remote sensing images using different dimension reduction methods with 3D/2D CNN, Remote Sens Appl: Soc Environ 25:100694.ISSN 2352-9385.https://doi.org/10.1016/j.rsase.2022.100694

  43. Xie H, Wang S, Liu K, Lin S, Hou B (2014):Multilayer feature learning for polarimetric synthetic radar data classification. In: IEEE international geoscience and remote sensing symposium (IGARSS)

    Google Scholar 

  44. Geng J, Fan J, Wang H, Ma X, Li B, Chen F (2015):High-resolution SAR image classification via deep convolutional autoencoder. IEEE Geosci Remote Sens Lett 12(11): 2351–2355

    Google Scholar 

  45. Teimouri N, Dyrmann M, Jørgensen RN (2019) A novel spatiotemporal FCN-LSTM network for recognizing various crop types using multi-temporal radar images. Remote Sens 11(8):990

    Google Scholar 

  46. Lapini A et al (2020) Application of deep learning to optical and SAR images for the classification of agricultural areas in Italy, In IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 2020, pp 4163–4166. https://doi.org/10.1109/IGARSS39084.2020.9323190

  47. Shelhamer E, Jonathan L, Trevor D (2017) Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39(4):640–651

    Google Scholar 

  48. Huang G, Liu Z, van der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708

    Google Scholar 

  49. Zhang X, Zhou X, Lin M, Sun J (2018):ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: The IEEE conference on computer vision and pattern recognition (CVPR)

    Google Scholar 

  50. Ren YZ, Changren X, Shunping (2018) Small object detection in optical remote sensing images via modified faster R-CNN. Appl Sci 8:813, 2076–3417. https://doi.org/10.3390/app8050813

  51. Mohanakrishnan P, Suthendran K, Pradeep A, Yamini AP (2022) Synthetic aperture radar image despeckling based on modifed convolution neural network. Appl Geomatics. https://doi.org/10.1007/s12518-022-00420-8

  52. Liu S, Pu N, Cao J, Zhang K (2022) Synthetic aperture Radar image despeckling based on multi-weighted sparse coding. Entropy 24:96. https://doi.org/10.3390/e24010096

  53. Schmitt M, Hughes LH, Zhu XX (2018) The Sen1–2 dataset for deep learning In Sar-optical data fusion. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci IV-1:141–146. https://doi.org/10.5194/isprs-annals-IV-1-141-2018

  54. Cheng G, Han J (2016) A survey on object detection in optical remote sensing images. ISPRS J Photogramm Remote Sens 117:11–28.ISSN 0924-2716. https://doi.org/10.1016/j.isprsjprs.2016.03.014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavita Devanand Bathe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Devanand Bathe, K., Patil, N.S. (2023). Leveraging Potential of Deep Learning for Remote Sensing Data: A Review. In: Bhattacharyya, S., Koeppen, M., De, D., Piuri, V. (eds) Intelligent Systems and Human Machine Collaboration. Lecture Notes in Electrical Engineering, vol 985. Springer, Singapore. https://doi.org/10.1007/978-981-19-8477-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8477-8_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8476-1

  • Online ISBN: 978-981-19-8477-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics