Skip to main content

Measurements of the Angular Distribution of Elastically and Inelastically Scattered Products

  • Chapter
  • First Online:
Understanding Nuclear Physics
  • 494 Accesses

Abstract

This chapter summarizes the experimental setup (such as targets and detectors), measuring, and data reduction procedures towards obtaining the angular distribution of accelerated ions elastically or inelastically scattered from targets. Different normalization methods for obtaining the absolute elastic scattering cross section and its ratio to Rutherford are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The energy width of a peak do not depends solely on the detector resolution, but also on the target thickness, the kinematic widening due to the angular acceptances of the detector among other factors, as it will be discussed in Sect. 2.3.

  2. 2.

    Estimated following [10].

  3. 3.

    Switching the shortcut to the other side, the position is measured from the other end.

  4. 4.

    Here, we assume an energy of 40 MeV, which is close to the Coulomb barrier between \(^{16}\)O and a medium-mass target such as \(^{58}\)Ni.

  5. 5.

    These recoil nuclei have their corresponding ejectiles on the other side of the beam and, hence, are uncorrelated to ejectiles recorded in the same detector.

  6. 6.

    See [14], Chap. 4, Sect. VII for a more precise treatment.

  7. 7.

    A Faraday cup upstream from the target can register the beam intensity only before and after each run. The average of those values, multiplied by the run duration and divided by the charge state q tuned by the accelerator, could be used just as a consistency check for the number of incoming projectiles \(N_{inc}\).

  8. 8.

    The Fresnel peak, which occurs for energies well above the barrier, lies somehow out of this curve.

References

  1. M. MacFarlane, S. Pieper, PTOLEMY: A Program for Heavy-ion Direct-reaction Calculation. 01 (1978)

    Google Scholar 

  2. J. Raynal, \(\rm ECIS-12\) code (\(\rm NEA\) 0850/19) (2013). www.oecd-nea.org/tools/abstract/detail/nea-0850

  3. I.J. Thompson, F.M. Nunes, Nuclear Reactions for Astrophysics: Principles, Calculation and Applications of Low-Energy Reactions (Cambridge University Press, 2009). https://doi.org/10.1017/CBO9781139152150

  4. G. Hauser, R. Loehken, H. Rebel, G. Schatz, G.W. Schweimer, J. Specht, Elastic scattering of 104-\(\rm MeV\) alpha particles. Nucl. Phys. A 128, 81–109 1 (1969). https://doi.org/10.1016/0375-9474(69)90980-4, https://www.osti.gov/biblio/4796706

  5. P.E. Hodgson, The nuclear optical model. Rep. Prog. Phys. 34(2), 765–819 (1971). https://doi.org/10.1088/0034-4885/34/2/306

  6. L. Fimiani, J.M. Figueira, G.V. Martí, J.E. Testoni, A.J. Pacheco, W.H. Z. Cárdenas, A. Arazi, O.A. Capurro, M.A. Cardona, P. Carnelli, E. de Barbará, D. Hojman, D. Martinez Heimann, A.E. Negri, Elastic scattering in the \(^{6,7}\rm Li\mathit{+ ^{80}\rm Se}\) systems. Phys. Rev. C 86, 044607 (2012). https://doi.org/10.1103/PhysRevC.86.044607. https://doi.org/10.1088/0034-4885/34/2/306

  7. L.R. Gasques, M.A.G. Alvarez, A. Arazi, B.V. Carlson, L.C. Chamon, J.P. Fernández-García, A. Lépine-Szily, J. Lubian, J. Rangel, M. Rodríguez-Gallardo, V. Scarduelli, V.A.B. Zagatto, Understanding the mechanisms of nuclear collisions: A complete study of the \(^{10}\rm B\mathit{+^{120}\rm Sn}\) reaction. Phys. Rev. C 103, 034616 (2021). https://doi.org/10.1103/PhysRevC.103.034616

  8. F. Perey, G.R. Satchler, Validity of the \(\rm DWBA\) for inelastic scattering from nuclei. Phys. Lett. 5(3), 212–215 (1963). https://doi.org/10.1016/S0375-9601(63)96559-9, https://www.osti.gov/biblio/4686310

  9. G.R. Satchler, Direct Nuclear Reactions (Clarendon Press, United Kingdom, 1983)

    Google Scholar 

  10. R.A. Broglia, A. Winther, Heavy Ion Physics (Addition-Wesley Publishing, Red wood City, CA, USA, 1991)

    Google Scholar 

  11. G. Schiwietz, P.L Grande, Improved charge-state formulas. Nucl. Instr. & Meth. B 175-177, 125–131 (2001)

    Google Scholar 

  12. J. Klein, R. Middleton, H. Tang, Modifications of an fn tandem for quantitative \(^{10}\rm Be\) measurement. Nucl. Instrum. Methods Phys. Res. 193(3), 601–616 (1982). ISSN 0167-5087. https://doi.org/10.1016/0029-554X(82)90258-0

  13. F. Gollan, Study of the interaction potential of weakly bound nuclei. Ph.D. thesis, Buenos Aires University, Argentina (2019)

    Google Scholar 

  14. G. Knoll, Radiation Detection and Measurement (Wiley, New York, 2000)

    Google Scholar 

  15. A. Arazi, J. Casal, M. Rodríguez-Gallardo, J.M. Arias, R. Lichtenthäler Filho, D. Abriola, O.A. Capurro, M.A. Cardona, P.F.F. Carnelli, E. de Barbará, J. Fernández Niello, J.M. Figueira, L. Fimiani, D. Hojman, G.V. Martí, D. Martínez Heimman, A.J. Pacheco, \(^{9}\rm Be\mathit{+^{120}\rm Sn}\) scattering at near-barrier energies within a four-body model. Phys. Rev. C 97, 044609 (2018). https://doi.org/10.1103/PhysRevC.97.044609

  16. F. Gollan, D. Abriola, A. Arazi, O.A. Capurro, M.A. Cardona, E. de Barbará, D. Hojman, G.V. Martí, A.J. Pacheco, D. Rodrigues, J.E. Testoni, Breakup threshold anomaly in the elastic scattering of the \(^9\rm Be\mathit{+ ^{80}\rm Se}\) system. Nucl. Phys. A 979, 87–101 (2018). ISSN 0375-9474, https://doi.org/10.1016/j.nuclphysa.2018.09.003, https://www.sciencedirect.com/science/article/pii/S037594741830191X

  17. A.N Ostrowski, S. Cherubini, T. Davinson, D. Groombridge, A.M Laird, A. Musumarra, A. Ninane, A. Di Pietro, A.C. Shotter, P.J. Woods, Cd: A double sided silicon strip detector for radioactive nuclear beam experiments. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equipm. 480(2–3), 448–455 (2002). ISSN 0168-9002, https://doi.org/10.1016/S0168-9002(01)00954-8

  18. D. Torresi, Jacopo Forneris, L. Grassi, Luis Acosta, A. Di Pietro, P. Figuera, M. Fisichella, Veljko Grilj, M. Jakic, M. Lattuada, T. Mijatovic, M. Milin, L. Prepolec, N. Skukan, N. Soić, D. Stanko, V. Tokić, M. Uroić, M. Zadro, Effects of the interstrip gap on the efficiency and response of double sided silicon strip detectors. vol. 117, p. 10009, 01 (2016). https://doi.org/10.1051/epjconf/201611710009

  19. C.C. Bueno, J.A.C. Gonçalves, M.D. de S. Santos, The performance of low-cost commercial photodiodes for charged particle and x-ray spectrometry. Nucl. Instrum. Methods Phys. Res. A 371, 460–464 (1996)

    Google Scholar 

  20. C. Domienikan, P. Costa, F. Genezini, G. Soares Zahn, Low-cost amplifier for alpha detection with photodiode, in International Nuclear Atlantic Conference - INAC 2017 (2018)

    Google Scholar 

  21. J. Chatzakis, S. Hassan, E. Clark, M. Tararakis, A 1ghz low-cost, ultra low-noise preamplifier. WSEAS Trans. Electron. 11, 120–126 (2020)

    Article  Google Scholar 

  22. P.F.F. Carnelli, A Arazi, J.O. Fernández Niello, O.A. Capurro, M.A. Cardona, E. de Barbará, J.M. Figueira, D. Hojman, G.V. Martí, D. Martinez Heimann, A.E. Negri, A.J. Pacheco, A detection system with broad angular acceptance for particle identification and angular distribution measurements. EPJ Web Conf. 117, 10009 (2013)

    Google Scholar 

  23. P.F.F. Carnelli, D. Martinez Heimann, A.J. Pacheco, A. Arazi, O.A. Capurro, J.O. Fernández Niello, M.A. Cardona, E. de Barbará, J.M. Figueira, D.L. Hojman, G.V. Martí, A.E. Negri, Inclusive and exclusive measurements of alpha particle production mechanisms in the \(^{7}\rm Li\mathit{+ ^{144}\rm Sm}\) system. Nucl. Phys. A 969, 94–113 (2018). https://doi.org/10.1016/j.nuclphysa.2017.08.007

  24. E. Stiliaris, H.G. Bohlen, P. Fröbrich, B. Gebauer, D. Kolbert, W. von Oertzen, M. Wilpert, Th. Wilpert, Nuclear rainbow structures in the elastic scattering of 16 O on 16 O at E L \(= \)350 Me. Phys. Lett. B 223, 291–295 (1989). https://doi.org/10.1016/0370-2693(89)91604-3

  25. M.L. Halbert, A. Zucker, Elastic scattering of \(^{14}\rm N\) by \(^9\rm Be\). Phys. Rev. 115, 1635–1642 (1959). https://doi.org/10.1103/PhysRev.115.1635

  26. R.L. McGrath, D. Abriola, J. Karp, T. Renner, S.Y. Zhu, Direct \(\gamma \) transitions in \(^{12}\rm C\mathit{+ ^{12}\rm C}\). Phys. Rev. C 24, 2374–2377 (1981). https://doi.org/10.1103/PhysRevC.24.2374

  27. K. Wittenburg, Specific instrumentation and diagnostics for high-intensity hadron beams. 05 2011. https://doi.org/10.5170/CERN-2013-001.251

  28. J. Figueira, D. Abriola, J.O. Niello, A. Arazi, O. Capurro, E. Barbará, Gil Marti, D. Heimann, A. Pacheco, J. Testoni, Ivan Padron, P. Gomes, J. Lubian, Absence of the threshold anomaly in the elastic scattering of the weakly bound projectile \(^7\rm Li\) on \(^{27}\!\rm Al\). Phys. Rev. C 73, 54603 04 (2006). https://doi.org/10.1103/PhysRevC.73.054603

  29. V. Guimarães, J. Lubian, J.J. Kolata, E.F. Aguilera, M. Assunção, V. Morcelle, Phenomenological critical interaction distance from elastic scattering measurements on a \(^{208}\rm Pb\) target. Eur. Phys. J. A 54(12), 223 (2018). https://doi.org/10.1140/epja/i2018-12662-7

    Article  ADS  Google Scholar 

  30. C. Tenreiro, J.C. Acquadro, P.A.B. Freitas, R. Liguori Neto, G. Ramirez, N. Cuevas, P.R.S. Gomes, R. Cabezas, R.M. Anjos, J. Copnell, Elastic and inelastic scattering of \(^{16}\rm O\)\({+}^{64}\)zn at near-barrier energies. Phys. Rev. C 53, 2870–2878 (1996). https://doi.org/10.1103/PhysRevC.53.2870, https://link.aps.org/doi/10.1103/PhysRevC.53.2870

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Arazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arazi, A., Abriola, D. (2023). Measurements of the Angular Distribution of Elastically and Inelastically Scattered Products. In: Deshmukh, N., Joshi, N. (eds) Understanding Nuclear Physics. Springer, Singapore. https://doi.org/10.1007/978-981-19-8437-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8437-2_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8436-5

  • Online ISBN: 978-981-19-8437-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics