Skip to main content

Experimental Details for a Typical Nuclear Physics Experiment

  • Chapter
  • First Online:
Understanding Nuclear Physics

Abstract

This chapter gives the essence of the experimental set-up which is required for performing nuclear physics experiment that is necessary for exploring properties of the nucleus. The chapter accordingly focuses on the possible instrumentation and tools required to perform a nuclear physics experiment. The chapter gives the attention to ion sources and describes how an ion is produced and accelerated to perform a required nuclear reaction. It features all the categories and features of the accelerators. It gives the glimpse of the targets meant for the nuclear physics experiments. The chapter describes about the detection systems which are key ingredients of the nuclear physics experimental set-up as it is must to identify and study the characteristics of the final product after nuclear reaction. The chapter also highlights about the nuclear electronics, vacuum systems, Faraday cup and beam dumping and its shielding. In the end of the chapter, some standardized laboratory radioactive sources are also presented along with a schematic presentation of the experimental set-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Wolf, Handbook of ion sources (CRC Press, 1995)

    Google Scholar 

  2. J.L. Rovey, B.P. Ruzic, T.J. Houlahan, Simple penning ion source for laboratory research and development applications. Rev. Sci. Instrum. 78(10), 106101 (2007)

    Article  ADS  Google Scholar 

  3. F.M. Penning, Ein neues manometer für niedrige gasdrucke, insbesondere zwischen l0–3 und 10–5 mm. Physica 4(2), 71–75 (1937)

    Article  ADS  Google Scholar 

  4. Y. Ishii, T. Ohkubo, H. Kashiwagi, Y. Miyake, Development of a prototype pig ion source with electric magnets for a compact ion microbeam system, in AIP Conference Proceedings, vol. 2011. (AIP Publishing LLC, 2018), p. 080015

    Google Scholar 

  5. A. Fathi, S.A.H. Feghhi, S.M. Sadati, E. Ebrahimibasabi, Magnetic field design for a penning ion source for a 200 kev electrostatic accelerator. Nucl. Instrum. Methods Phys. Res., Sect. A 850, 1–6 (2017)

    Google Scholar 

  6. O.A. Popov, High density plasma sources: design, physics and performance (Elsevier, 1996)

    Google Scholar 

  7. J. Douglas Cockroft, E.T.S. Walton, Experiments with high velocity positive ions.–(i) further developments in the method of obtaining high velocity positive ions. Proc. Roy. Soc. Lond. Ser. A 136(830), 619–630 (1932). (Containing papers of a mathematical and physical character)

    Google Scholar 

  8. D.J. Clark, Accelerators for nuclear physics. Rep. Prog. Phys. 35(3), 1007 (1972)

    Article  ADS  Google Scholar 

  9. R.J. Van de Graaff, J.G. Trump, W.W. Buechner, Electrostatic generators for the acceleration of charged particles. Rep. Prog. Phys. 11(1), 1 (1947)

    Article  ADS  Google Scholar 

  10. E. Alfred Burrill, Van de graaff, the man and his accelerators, Phys. Today 20(2), 49–52 (1967). https://doi.org/10.1063/1.3034150

  11. P.H. Rose, The three-stage tandem accelerator. Nucl. Instrum. Methods, 11, 49–62 (1961). ISSN 0029-554X. https://doi.org/10.1016/0029-554X(61)90010-6, https://www.sciencedirect.com/science/article/pii/0029554X61900106

  12. R.J. Van de Graaff, Tandem electrostatic accelerators, in Proceedings of the 1958 Accelerator Conference, vol. 1958 (1958), pp. 14–16. Sponsored by High Voltage Engineering Corporation

    Google Scholar 

  13. T. pelletron, https://www.tifr.res.in/~pell/pelletron/index.php, a. Accessed: 2022-08-05

  14. I. Pelletron, https://www.iuac.res.in/pelletron-accelerator, b. Accessed: 2022-08-05

  15. M. Stanley Livingston, Part i, history of the cyclotron. Phys. Today 12(10), 18–23 (1959). https://doi.org/10.1063/1.3060517

  16. Vecc, http://apgweb.vecc.gov.in/research.html. Accessed: 2022-08-05

  17. V.I. Veksler, New method for the acceleration of relativistic particles. Doklady Akademii Nauk USSR 43, 346–348 (1944)

    Google Scholar 

  18. E.M. McMillan, The synchrotron-a proposed high energy particle accelerator. Phys. Rev. 68(5–6), 143 (1945)

    Article  ADS  Google Scholar 

  19. W.W. Salsig, First Large Synchrotron Placed in Operation, vol. 219 (US Atomic Energy Commission, Technical Information Division, 1949)

    Google Scholar 

  20. D.W. Kerst, Historical development of the betatron. Nature 157(3978), 90–95 (1946)

    Article  ADS  Google Scholar 

  21. N. Fomin, G.L. Greene, R.R. Allen, V. Cianciolo, C. Crawford, T.M. Tito, P.R. Huffman, E.B. Iverson, R. Mahurin, W.M. Snow, Fundamental neutron physics beamline at the spallation neutron source at ornl. Nucl. Instrum. Methods Phys. Res., Sect. A 773, 45–51 (2015)

    Google Scholar 

  22. A. Krása, Spallation reaction physics (2010)

    Google Scholar 

  23. H. Gegier, E. Marsden, E. Rutherford, On a diffuse reflection of the \({\alpha }\)-particles. Proc. Royal Soc. Lond. Ser. A 82(557), 495–500 (1909). https://doi.org/10.1098/rspa.1909.0054, https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1909.0054. Containing Papers of a Mathematical and Physical Character

  24. E. Rutherford, H. Geiger, An electrical method of counting the number of \(\alpha \)-particles from radio-active substances. Proc. Roy. Soc. Lond. Ser. A 81, 141–161 (1908). Containing Papers of a Mathematical and Physical Character

    Google Scholar 

  25. H.A. Landwehr G. U.E. Röntgen, W. Conrad, Röntgen Centennial : X-rays in Natural and Life Sciences (World Scientific, Singapore, River Edge, NJ, 1997)

    Google Scholar 

  26. H. Becquerel, Sur les radiations émises par phosphorescence. Comptes rendus de 1’Academie des Sciences, Paris 122, 420–421 (1896)

    Google Scholar 

  27. G.F. Knoll, Radiation Detection and Measurement (Wiley, 2010)

    Google Scholar 

  28. K.S. Krane, Introductory Nuclear Physics (Wiley, 1991)

    Google Scholar 

  29. S.N. Ahmed. Physics and Engineering of Radiation Detection (Academic, 2007)

    Google Scholar 

  30. A.J. Keller, An increasingly rare isotope (2011)

    Google Scholar 

  31. M. Erickson, Boron-10 neutron detectors for helium-3 replacement (2011)

    Google Scholar 

  32. M. Voytchev, M.P. Iñiguez, R. Méndez, A. Mañanes, L.R. Rodrıguez, R. Barquero, Neutron detection with a silicon pin photodiode and 6lif converter. Nucl. Instrum. Methods Phys. Res., Sect. A 512(3), 546–552 (2003)

    Google Scholar 

  33. K. Banerjee, T.K. Ghosh, S. Kundu, T.K. Rana, C. Bhattacharya, J.K. Meena, G. Mukherjee, P. Mali, D. Gupta, S. Mukhopadhyay et al., Variation of neutron detection characteristics with dimension of bc501a neutron detector. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 608(3), 440–446 (2009 )

    Google Scholar 

  34. H. Klein, S. Neumann, Neutron and photon spectrometry with liquid scintillation detectors in mixed fields. Nucl. Instrum. Methods Phys. Res., Sect. A 476(1–2), 132–142 (2002)

    Google Scholar 

  35. Á. Horváth, K. Ieki, Y. Iwata, J.J. Kruse, Z. Seres, J. Wang, J. Weiner, P.D. Zecher, A. Galonsky, Comparison of two liquid scintillators used for neutron detection. Nucl. Instrum. Methods Phys. Res., Sect. A 440(1), 241–244 (2000)

    Google Scholar 

  36. M. Pavlovič, K. Sedlačková, A. Šagátová, I. Strašík, Application of the s3m and mcnpx codes in particle detector development, in International Journal of Modern Physics: Conference Series, vol. 27 (World Scientific, 2014), pp. 1460153

    Google Scholar 

  37. D.S. McGregor, R.T. Klann, H.K. Gersch, Y.H. Yang, Thin-film-coated bulk gaas detectors for thermal and fast neutron measurements. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 466(1), 126–141 (2001)

    Google Scholar 

  38. K. Sedlačková, B. Zat’ko, A. Šagátová, V. Nečas, Monte carlo simulations of the particle transport in semiconductor detectors of fast neutrons. Nucl. Instrum. Methods Phys. Res., Sect. A 709, 63–67 (2013)

    Google Scholar 

  39. T.M. Filho, M.M. Hamada, F. Shiraishi, C. Henrique de Mesquita, Development of neutron detector using the surface barrier sensor with polyethylene (n, p) and 10b (n, \(\alpha \)) converters. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 458(1-2), 441–447 (2001)

    Google Scholar 

  40. W.R Leo, Techniques for Nuclear and Particle Physics Experiments: A How-to Approach (Springer Science & Business Media, 2012)

    Google Scholar 

  41. G. Choppin, J-O. Liljenzin, J. Rydberg, Radiochemistry and Nuclear Chemistry (Butterworth-Heinemann, 2002)

    Google Scholar 

  42. S. Aiello, A. Anzalone, G. Cardella, S.I. Cavallaro, E. De Filippo, A. Di Pietro, S. Femino, M. Geraci, P. Guazzoni, M. Iacono-Manno et al., Light response and particle identification with large csi (ti) crystals coupled to photodiodes. Nucl. Instrum. Methods Phys. Res., Sect. A 369(1), 50–54 (1996)

    Google Scholar 

  43. M.M. Bourne, C. Mussi, E.C. Miller, S.D. Clarke, S.A. Pozzi, A. Gueorguiev, Characterization of the clyc detector for neutron and photon detection. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 736, 124–127 (2014). ISSN 0168-9002, https://doi.org/10.1016/j.nima.2013.10.030, https://www.sciencedirect.com/science/article/pii/S0168900213013764

  44. N. D’Olympia, P. Chowdhury, C.J. Lister, J. Glodo, R. Hawrami, K. Shah, U. Shirwadkar, Pulse-shape analysis of clyc for thermal neutrons, fast neutrons, and gamma-rays. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 714, 121–127 (2013). ISSN 0168-9002, https://doi.org/10.1016/j.nima.2013.02.043, https://www.sciencedirect.com/science/article/pii/S0168900213002349

  45. B. Dey, H. Krishnamoorthy, S. Pal, M.S. Pose, V. Nanal, R.G. Pillay, Characterization of clyc detector, in Proceedings of the DAE Symp. on Nucl. Phys, vol. 62 (2017), p. 994

    Google Scholar 

  46. C. Tintori, Wp2081 digital pulse processing in nuclear physics, in CAEN White Paper (2011), pp. 1–21

    Google Scholar 

  47. M. Ohring Materials Science of Thin Films: Depositon & Structure (Elsevier, 2001)

    Google Scholar 

  48. A.D. Chew, Mechanical vaccum pumps (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balaram Dey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dey, B., Bhattacharya, S. (2023). Experimental Details for a Typical Nuclear Physics Experiment. In: Deshmukh, N., Joshi, N. (eds) Understanding Nuclear Physics. Springer, Singapore. https://doi.org/10.1007/978-981-19-8437-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8437-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8436-5

  • Online ISBN: 978-981-19-8437-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics