Skip to main content

Cross-Talk Between Gut Microbiota and Immune Cells and Its Impact on Inflammatory Diseases

  • Chapter
  • First Online:
Biotechnology Applied to Inflammatory Diseases

Abstract

The collection of microorganisms that inhabits the human gastrointestinal tract is usually called the gut microbiota. The gut microbiota is an important component for the development and function of the immune system, operating as a complex of microorganisms that produce substances that interact with the immune cells and respond to internal and external stimuli in the body. The gut microbiota has a different composition in healthy individuals and those who have a disease suggesting that it can be a disease marker. It is also suggested to educate the host immune response and keep homeostasis through sophisticated microbial cross-talk with the mucosal immune system that includes huge integrated signaling pathways and gene regulatory circuits. The imbalance of these delicate interactions between microbiota and immune cells is associated with the development not only of inflammatory diseases but of also several diseases such as neurological, autoimmune disease, and metabolic syndrome. Therefore, a better understanding becomes vital for comprehending the factors linked with the development and/or occurrence of these disorders. This chapter focuses on the current findings of the role of gut microbiota in the activation and function of immune cells and how this relation modulates homeostasis and health disorders associated with microbiome dysbiosis. Moreover, we point up new nanotechnology therapies concerning manipulating the microbiome for the management of microbiota alterations-related human disease, giving and discussing future challenges and the perspective for this emerging area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdollahi-Roodsaz S et al (2008) Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J Clin Invest 118(1):205–216

    Article  CAS  PubMed  Google Scholar 

  • Adnan S et al (2017) Alterations in the gut microbiota can elicit hypertension in rats. Physiol Genomics 49(2):96–104

    Article  CAS  PubMed  Google Scholar 

  • Alam C et al (2011) Effects of a germ-free environment on gut immune regulation and diabetes progression in non-obese diabetic (NOD) mice. Diabetologia 54(6):1398–1406

    Article  CAS  PubMed  Google Scholar 

  • Alhagamhmad MH et al (2016) An overview of the bacterial contribution to Crohn disease pathogenesis. J Med Microbiol 65(10):1049–1059

    Article  CAS  PubMed  Google Scholar 

  • Aoki R et al (2018) Indole-3-pyruvic acid, an aryl hydrocarbon receptor activator, suppresses experimental colitis in mice. J Immunol 201(12):3683–3693

    Article  CAS  PubMed  Google Scholar 

  • Arpaia N et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504(7480):451–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arumugam M et al (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atarashi K et al (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331(6015):337–341

    Article  CAS  PubMed  Google Scholar 

  • Atarashi K et al (2013) Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500(7461):232–236

    Article  CAS  PubMed  Google Scholar 

  • Atarashi K et al (2015) Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163(2):367–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badami E et al (2011) Defective differentiation of regulatory FoxP3+ T cells by small-intestinal dendritic cells in patients with type 1 diabetes. Diabetes 60(8):2120–2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker PI, Love DR, Ferguson LR (2009) Role of gut microbiota in Crohn’s disease. Expert Rev Gastroenterol Hepatol 3(5):535–546

    Article  CAS  PubMed  Google Scholar 

  • Bilate AM, Lafaille JJ (2012) Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu Rev Immunol 30:733–758

    Article  CAS  PubMed  Google Scholar 

  • Bilotta AJ, Cong Y (2019) Gut microbiota metabolite regulation of host defenses at mucosal surfaces: implication in precision medicine. Precis Clin Med 2(2):110–119

    Article  PubMed  PubMed Central  Google Scholar 

  • Boeckxstaens GE (2018) The emerging role of mast cells in irritable bowel syndrome. Gastroenterol Hepatol (N Y) 14(4):250–252

    PubMed  Google Scholar 

  • Boland BS et al (2020) Heterogeneity and clonal relationships of adaptive immune cells in ulcerative colitis revealed by single-cell analyses. Sci Immunol 5(50):eabb4432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busbee PB et al (2020) Indole-3-carbinol prevents colitis and associated microbial dysbiosis in an IL-22-dependent manner. JCI Insight 5(1):e127551

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvalho FA et al (2012) Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. Cell Host Microbe 12(2):139–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaput N et al (2017) Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol 28(6):1368–1379

    Article  CAS  PubMed  Google Scholar 

  • Charbonneau MR et al (2016) Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164(5):859–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J et al (2016) An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med 8(1):43

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke TB et al (2010) Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 16(2):228–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comito D, Cascio A, Romano C (2014) Microbiota biodiversity in inflammatory bowel disease. Ital J Pediatr 40:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Cong Y et al (2009) A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci U S A 106(46):19256–19261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constantinescu CS et al (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164(4):1079–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullender TC et al (2013) Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe 14(5):571–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David LA et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563

    Article  CAS  PubMed  Google Scholar 

  • Duttaroy AK (2021) Role of gut microbiota and their metabolites on atherosclerosis, hypertension and human blood platelet function: a review. Nutrients 13(1):144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elinav E et al (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145(5):745–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elvers KT et al (2020) Antibiotic-induced changes in the human gut microbiota for the most commonly prescribed antibiotics in primary care in the UK: a systematic review. BMJ Open 10(9):e035677

    Article  PubMed  PubMed Central  Google Scholar 

  • Farhood B, Najafi M, Mortezaee K (2019) CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol 234(6):8509–8521

    Article  CAS  PubMed  Google Scholar 

  • Feuerstein JD, Moss AC, Farraye FA (2019) Ulcerative colitis. Mayo Clin Proc 94(7):1357–1373

    Article  PubMed  Google Scholar 

  • Frank DN et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104(34):13780–13785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friman V et al (2002) Increased frequency of intestinal Escherichia coli carrying genes for S fimbriae and haemolysin in IgA-deficient individuals. Microb Pathog 32(1):35–42

    Article  CAS  PubMed  Google Scholar 

  • Furusawa Y et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504(7480):446–450

    Article  CAS  PubMed  Google Scholar 

  • Geremia A et al (2014) Innate and adaptive immunity in inflammatory bowel disease. Autoimmun Rev 13(1):3–10

    Article  CAS  PubMed  Google Scholar 

  • Geuking MB et al (2011) Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34(5):794–806

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan V et al (2018a) The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 33(4):570–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopalakrishnan V et al (2018b) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359(6371):97–103

    Article  CAS  PubMed  Google Scholar 

  • Goris H, de Boer F, van der Waaij D (1985) Myelopoiesis in experimentally contaminated specific-pathogen-free and germfree mice during oral administration of polymyxin. Infect Immun 50(2):437–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gui T et al (2012) Diverse roles of macrophages in atherosclerosis: from inflammatory biology to biomarker discovery. Mediators Inflamm 2012:693083

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall JA et al (2008) Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 29(4):637–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen J, Gulati A, Sartor RB (2010) The role of mucosal immunity and host genetics in defining intestinal commensal bacteria. Curr Opin Gastroenterol 26(6):564–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hapfelmeier S et al (2010) Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328(5986):1705–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassouneh R, Bajaj JS (2021) Gut microbiota modulation and fecal transplantation: an overview on innovative strategies for hepatic encephalopathy treatment. J Clin Med 10(2):330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imaoka A et al (1996) Proliferative recruitment of intestinal intraepithelial lymphocytes after microbial colonization of germ-free mice. Eur J Immunol 26(4):945–948

    Article  CAS  PubMed  Google Scholar 

  • Imhann F et al (2017) The influence of proton pump inhibitors and other commonly used medication on the gut microbiota. Gut Microbes 8(4):351–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov II et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139(3):485–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki A, Kelsall BL (1999) Freshly isolated Peyer’s patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J Exp Med 190(2):229–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamp ME et al (2016) G protein-coupled receptor 43 modulates neutrophil recruitment during acute inflammation. PLoS One 11(9):e0163750

    Article  PubMed  PubMed Central  Google Scholar 

  • Kasahara K et al (2017) Commensal bacteria at the crossroad between cholesterol homeostasis and chronic inflammation in atherosclerosis. J Lipid Res 58(3):519–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsarou A et al (2017) Type 1 diabetes mellitus. Nat Rev Dis Primers 3:17016

    Article  PubMed  Google Scholar 

  • Keith JW, Pamer EG (2019) Enlisting commensal microbes to resist antibiotic-resistant pathogens. J Exp Med 216(1):10–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keubler LM et al (2015) A multihit model: colitis lessons from the interleukin-10-deficient mouse. Inflamm Bowel Dis 21(8):1967–1975

    Article  PubMed  Google Scholar 

  • Khan KJ et al (2011) Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis. Am J Gastroenterol 106(4):661–673

    Article  CAS  PubMed  Google Scholar 

  • Khor B, Gardet A, Xavier RJ (2011) Genetics and pathogenesis of inflammatory bowel disease. Nature 474(7351):307–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khosravi A et al (2014) Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 15(3):374–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M et al (2018) Critical role for the microbiota in CX3CR1(+) intestinal mononuclear phagocyte regulation of intestinal T cell responses. Immunity 49(1):151–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitai T, Tang WHW (2018) Gut microbiota in cardiovascular disease and heart failure. Clin Sci (Lond) 132(1):85–91

    Article  PubMed  Google Scholar 

  • Koeth RA et al (2013) Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19(5):576–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornbluth A (1999) Cyclosporine in inflammatory bowel disease. Curr Gastroenterol Rep 1(6):486–490

    Article  CAS  PubMed  Google Scholar 

  • Krajmalnik-Brown R et al (2012) Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract 27(2):201–214

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnan S et al (2018) Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. Cell Rep 23(4):1099–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunii J et al (2011) Commensal bacteria promote migration of mast cells into the intestine. Immunobiology 216(6):692–697

    Article  CAS  PubMed  Google Scholar 

  • Labarta-Bajo L et al (2020) Type I IFNs and CD8 T cells increase intestinal barrier permeability after chronic viral infection. J Exp Med 217(12):e20192276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamas B et al (2016) CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med 22(6):598–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamas B, Natividad JM, Sokol H (2018) Aryl hydrocarbon receptor and intestinal immunity. Mucosal Immunol 11(4):1024–1038

    Article  CAS  PubMed  Google Scholar 

  • Lanternier F et al (2015) Inherited CARD9 deficiency in otherwise healthy children and adults with Candida species-induced meningoencephalitis, colitis, or both. J Allergy Clin Immunol 135(6):1558–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavasani S et al (2010) A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLoS One 5(2):e9009

    Article  PubMed  PubMed Central  Google Scholar 

  • Lazar V et al (2018) Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front Immunol 9:1830

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee YK et al (2011) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 108(Suppl 1):4615–4622

    Article  CAS  PubMed  Google Scholar 

  • Lee YP et al (2019) The germ-free mice monocolonization with Bacteroides fragilis improves azoxymethane/dextran sulfate sodium induced colitis-associated colorectal cancer. Immunopharmacol Immunotoxicol 41(2):207–213

    Article  CAS  PubMed  Google Scholar 

  • Lee Y et al (2020) Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat Mater 19(1):118–126

    Article  CAS  PubMed  Google Scholar 

  • Leipe J et al (2010) Role of Th17 cells in human autoimmune arthritis. Arthritis Rheum 62(10):2876–2885

    Article  CAS  PubMed  Google Scholar 

  • Leung JM et al (2014) IL-22-producing CD4+ cells are depleted in actively inflamed colitis tissue. Mucosal Immunol 7(1):124–133

    Article  CAS  PubMed  Google Scholar 

  • Lewandowska AM et al (2019) Environmental risk factors for cancer—review paper. Ann Agric Environ Med 26(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Lindner C et al (2012) Age, microbiota, and T cells shape diverse individual IgA repertoires in the intestine. J Exp Med 209(2):365–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindner C et al (2015) Diversification of memory B cells drives the continuous adaptation of secretory antibodies to gut microbiota. Nat Immunol 16(8):880–888

    Article  CAS  PubMed  Google Scholar 

  • Lloyd-Price J, Abu-Ali G, Huttenhower C (2016) The healthy human microbiome. Genome Med 8(1):51

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo Y et al (2015) Microbiota from obese mice regulate hematopoietic stem cell differentiation by altering the bone niche. Cell Metab 22(5):886–894

    Article  CAS  PubMed  Google Scholar 

  • Lupp C et al (2007) Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2(2):119–129

    Article  CAS  PubMed  Google Scholar 

  • Luu M et al (2018) Regulation of the effector function of CD8(+) T cells by gut microbiota-derived metabolite butyrate. Sci Rep 8(1):14430

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma G et al (2017) Trimethylamine N-oxide in atherogenesis: impairing endothelial self-repair capacity and enhancing monocyte adhesion. Biosci Rep 37(2):BSR20160244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macpherson AJ, Martinic MM, Harris N (2002) The functions of mucosal T cells in containing the indigenous commensal flora of the intestine. Cell Mol Life Sci 59(12):2088–2096

    Article  CAS  PubMed  Google Scholar 

  • Maharshak N et al (2013) Altered enteric microbiota ecology in interleukin 10-deficient mice during development and progression of intestinal inflammation. Gut Microbes 4(4):316–324

    Article  PubMed  PubMed Central  Google Scholar 

  • Manichanh C et al (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55(2):205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marotz CA, Zarrinpar A (2016) Treating obesity and metabolic syndrome with fecal microbiota transplantation. Yale J Biol Med 89(3):383–388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maslowski KM et al (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461(7268):1282–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurice CF, Haiser HJ, Turnbaugh PJ (2013) Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152(1–2):39–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazmanian SK et al (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122(1):107–118

    Article  CAS  PubMed  Google Scholar 

  • Melero A et al (2017) Targeted delivery of cyclosporine A by polymeric nanocarriers improves the therapy of inflammatory bowel disease in a relevant mouse model. Eur J Pharm Biopharm 119:361–371

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen HB et al (2004) Macrophages in the small intestinal muscularis externa of embryos, newborn and adult germ-free mice. J Mol Histol 35(4):377–387

    Article  CAS  PubMed  Google Scholar 

  • Modoux M et al (2021) Tryptophan metabolism as a pharmacological target. Trends Pharmacol Sci 42(1):60–73

    Article  CAS  PubMed  Google Scholar 

  • Napolitano M, Covasa M (2020) Microbiota transplant in the treatment of obesity and diabetes: current and future perspectives. Front Microbiol 11:590370

    Article  PubMed  PubMed Central  Google Scholar 

  • Neuman MG, Nanau RM (2012) Inflammatory bowel disease: role of diet, microbiota, life style. Transl Res 160(1):29–44

    Article  PubMed  Google Scholar 

  • Ochoa-Reparaz J et al (2010) Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide a expression. J Immunol 185(7):4101–4108

    Article  CAS  PubMed  Google Scholar 

  • Oh J, Vidal-Jordana A, Montalban X (2018) Multiple sclerosis: clinical aspects. Curr Opin Neurol 31(6):752–759

    Article  PubMed  Google Scholar 

  • Ohkubo T et al (1990) Impaired superoxide production in peripheral blood neutrophils of germ-free rats. Scand J Immunol 32(6):727–729

    Article  CAS  PubMed  Google Scholar 

  • O'Shea JJ, Murray PJ (2008) Cytokine signaling modules in inflammatory responses. Immunity 28(4):477–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmela C et al (2018) Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 67(3):574–587

    Article  CAS  PubMed  Google Scholar 

  • Peterson DA et al (2007) IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2(5):328–339

    Article  CAS  PubMed  Google Scholar 

  • Picchianti-Diamanti A et al (2018) Analysis of gut microbiota in rheumatoid arthritis patients: disease-related dysbiosis and modifications induced by etanercept. Int J Mol Sci 19(10):2938

    Article  PubMed  PubMed Central  Google Scholar 

  • Pluznick J (2014) A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes 5(2):202–207

    Article  PubMed  Google Scholar 

  • Pluznick JL et al (2013) Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A 110(11):4410–4415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu J et al (2013) Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity 39(2):386–399

    Article  CAS  PubMed  Google Scholar 

  • Radjabzadeh D et al (2020) Diversity, compositional and functional differences between gut microbiota of children and adults. Sci Rep 10(1):1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regner EH et al (2018) Functional intraepithelial lymphocyte changes in inflammatory bowel disease and spondyloarthritis have disease specific correlations with intestinal microbiota. Arthritis Res Ther 20(1):149

    Article  PubMed  PubMed Central  Google Scholar 

  • Rooks MG et al (2014) Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission. ISME J 8(7):1403–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth GA et al (2017) Global, regional, and National Burden of Cardiovascular Diseases for 10 causes, 1990–2015. J Am Coll Cardiol 70(1):1–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Round JL, Mazmanian SK (2010) Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A 107(27):12204–12209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Round JL et al (2011) The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332(6032):974–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Routy B et al (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359(6371):91–97

    Article  CAS  PubMed  Google Scholar 

  • Sanos SL et al (2009) RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol 10(1):83–91

    Article  CAS  PubMed  Google Scholar 

  • Satoh-Takayama N et al (2008) Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29(6):958–970

    Article  CAS  PubMed  Google Scholar 

  • Schluter J et al (2020) The gut microbiota is associated with immune cell dynamics in humans. Nature 588(7837):303–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz M et al (1999) IL-2-deficient mice raised under germfree conditions develop delayed mild focal intestinal inflammation. Am J Physiol 276(6):G1461–G1472

    CAS  PubMed  Google Scholar 

  • Sellon RK et al (1998) Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun 66(11):5224–5231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen ZH et al (2018) Relationship between intestinal microbiota and ulcerative colitis: mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J Gastroenterol 24(1):5–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen B et al (2019) Antibiotics exacerbated colitis by affecting the microbiota, Treg cells and SCFAs in IL10-deficient mice. Biomed Pharmacother 114:108849

    Article  CAS  PubMed  Google Scholar 

  • Shi C et al (2011) Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands. Immunity 34(4):590–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shohan M et al (2020) Interleukin-22 and intestinal homeostasis: protective or destructive? IUBMB Life 72(8):1585–1602

    Article  CAS  PubMed  Google Scholar 

  • Sivan A et al (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350(6264):1084–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PM et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341(6145):569–573

    Article  CAS  PubMed  Google Scholar 

  • Smythies LE et al (2005) Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bactericidal activity. J Clin Invest 115(1):66–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnenburg ED et al (2016) Diet-induced extinctions in the gut microbiota compound over generations. Nature 529(7585):212–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X et al (2016) Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochem Biophys Res Commun 481(1–2):63–70

    Article  CAS  PubMed  Google Scholar 

  • Toral M et al (2019) Role of the immune system in vascular function and blood pressure control induced by faecal microbiota transplantation in rats. Acta Physiol (Oxf) 227(1):e13285

    Article  PubMed  Google Scholar 

  • Uranga JA et al (2016) Food, nutrients and nutraceuticals affecting the course of inflammatory bowel disease. Pharmacol Rep 68(4):816–826

    Article  CAS  PubMed  Google Scholar 

  • van der Leun AM, Thommen DS, Schumacher TN (2020) CD8(+) T cell states in human cancer: insights from single-cell analysis. Nat Rev Cancer 20(4):218–232

    Article  PubMed  PubMed Central  Google Scholar 

  • Vetizou M et al (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350(6264):1079–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijay-Kumar M et al (2007) Deletion of TLR5 results in spontaneous colitis in mice. J Clin Invest 117(12):3909–3921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Xu R (2019) Data-driven multiple-level analysis of gut-microbiome-immune-joint interactions in rheumatoid arthritis. BMC Genomics 20(1):124

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H et al (2021) Update on nanoparticle-based drug delivery system for anti-inflammatory treatment. Front Bioeng Biotechnol 9:630352

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei B et al (2010) Commensal microbiota and CD8+ T cells shape the formation of invariant NKT cells. J Immunol 184(3):1218–1226

    Article  CAS  PubMed  Google Scholar 

  • Wei M et al (2011) Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense. Nat Immunol 12(3):264–270

    Article  CAS  PubMed  Google Scholar 

  • Wen L et al (2008) Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455(7216):1109–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong SH et al (2017) Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology 153(6):1621–1633

    Article  PubMed  Google Scholar 

  • Wu HJ, Wu E (2012) The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 3(1):4–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu HJ et al (2010) Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32(6):815–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H et al (2017) Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 23(7):850–858

    Article  CAS  PubMed  Google Scholar 

  • Xu H et al (2019) The dynamic interplay between the gut microbiota and autoimmune diseases. J Immunol Res 2019:7546047

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang C, Merlin D (2019) Nanoparticle-mediated drug delivery systems for the treatment of IBD: current perspectives. Int J Nanomed 14:8875–8889

    Article  CAS  Google Scholar 

  • Yang T et al (2015) Gut dysbiosis is linked to hypertension. Hypertension 65(6):1331–1340

    Article  CAS  PubMed  Google Scholar 

  • Yang BH et al (2016) Foxp3(+) T cells expressing RORgammat represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunol 9(2):444–457

    Article  CAS  PubMed  Google Scholar 

  • Yang W et al (2020) Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun 11(1):4457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Q, Jobin C, Thomas RM (2021) Implications of the microbiome in the development and treatment of pancreatic cancer: thinking outside of the box by looking inside the gut. Neoplasia 23(2):246–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zelante T et al (2013) Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39(2):372–385

    Article  CAS  PubMed  Google Scholar 

  • Zeng B et al (2019) ILC3 function as a double-edged sword in inflammatory bowel diseases. Cell Death Dis 10(4):315

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou C et al (2020) SCFAs induce autophagy in intestinal epithelial cells and relieve colitis by stabilizing HIF-1alpha. J Mol Med (Berl) 98(8):1189–1202

    Article  CAS  PubMed  Google Scholar 

  • Zhu T, Goodarzi MO (2020) Metabolites linking the gut microbiome with risk for type 2 diabetes. Curr Nutr Rep 9(2):83–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu W et al (2016) Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165(1):111–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu S et al (2018) Orally administered gold nanoparticles protect against colitis by attenuating Toll-like receptor 4- and reactive oxygen/nitrogen species-mediated inflammatory responses but could induce gut dysbiosis in mice. J Nanobiotechnol 16(1):86

    Article  CAS  Google Scholar 

  • Zhu S et al (2019) Platinum nanoparticles as a therapeutic agent against dextran sodium sulfate-induced colitis in mice. Int J Nanomed 14:8361–8378

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinicius Andrade-Oliveira .

Editor information

Editors and Affiliations

Ethics declarations

This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP): Grant number: 2019/14755-0. Vinicius Andrade-Oliveira is also a fellow of the Pew Latin American Fellow program of the Pew Foundation. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, where Renan Willian Alves and Lorena Doretto-Silva received a grant for their PhD degree. Eloisa Martins da Silva is recipient of PhD fellowship from FAPESP (2020/14388-4).

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

da Silva, E.M., Alves, R.W., Doretto-Silva, L., Andrade-Oliveira, V. (2023). Cross-Talk Between Gut Microbiota and Immune Cells and Its Impact on Inflammatory Diseases. In: Ribeiro de Araujo, D., Carneiro-Ramos, M. (eds) Biotechnology Applied to Inflammatory Diseases. Interdisciplinary Biotechnological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-19-8342-9_8

Download citation

Publish with us

Policies and ethics