Skip to main content

Harnessing Rhizosphere Microbiomes in Crop Productivity

  • Chapter
  • First Online:
Detection, Diagnosis and Management of Soil-borne Phytopathogens

Abstract

Chemical fertilizers and pesticides in present-day agriculture cause real damage to our environment and are a potential hazard to human health too. Enhancing crop productivity by using the potential of microbes is a new and opportune idea for sustainable agriculture. In plants, the microbial composition is arbitrary of biotic and abiotic factors. These include soil pH, structure, salinity, type, moisture, organic matter, and exudates, which are most pertinent for underground plant parts. The difference in communities of rhizosphere and phyllosphere because of plant-associated microbiota is another factor. Interactions between microbes either directly or indirectly with environmental factors have an impact on the host. The resistance against abiotic and biotic stress improves plant health which has an influence on the nutrient cycle by arbuscular mycorrhiza. Primary or secondary protection to the crop plants rapidly inhibits the rhizosphere apart from plant growth-promoting rhizobacteria (PGPR) which are a heterogeneous group of bacteria. The rate of seed growth was greatly accelerated by PGPR, and they also offer protection against harmful bacteria. The yield of many crops is substantially increased by the ability to uptake water and nutrients due to PGPR. PGPR work in symbiosis with other advantageous microorganisms, increasing the fixation of nitrogen and availability of primary and secondary micronutrients resulting in enhanced plant productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST et al (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14:e1002352. https://doi.org/10.1371/journal.pbio.1002352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali Z, Shah M, Nawaz A, Shahjahan M, Butt H, Shahid M, Ahmed R (2014) Assessment of induced systemic resistance through antagonistic rhizobacterial potential with salicylic acid against karnal bunt of wheat. Pak J Phytopathol 26:253–258

    Google Scholar 

  • Balsanelli E, Tuleski TR, de Baura VA, Yates MG, Chubatsu LS (2013) Maize root lectins mediate the interaction with Herbaspirillum seropedicae via N-acetyl glucosamine residues of lipopolysaccharides. PLoS One 8:770–701

    Article  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2004) Mycorrhizal fungi and plant growth promoting rhizobacteria. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Heidelberg, pp 351–371

    Google Scholar 

  • Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma L-J et al (2017) Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu Rev Phytopathol 55:61–83

    Article  CAS  PubMed  Google Scholar 

  • Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436–443

    Article  Google Scholar 

  • Cavicchioli R (2011) Archaea—timeline of the third domain. Nat Rev Microbiol 9:51

    Article  CAS  PubMed  Google Scholar 

  • Chapelle E, Mendes R, Bakker PA, Raaijmakers JM (2016) Fungal invasion of the rhizosphere microbiome. ISME J 10:265–268

    Article  CAS  PubMed  Google Scholar 

  • Deppenmeier U (2002) The unique biochemistry of methanogenesis. Prog Nucleic Acid Res Mol Biol 71:223–283

    Article  CAS  PubMed  Google Scholar 

  • Fand SR, Leyva KJ (2008) Archaeal antimicrobials: an undiscovered country. Archaea: New Models for Prokaryotic Biology. Caister Academic Press, Norfolk

    Google Scholar 

  • Frey-Klett P, Chavatte M, Clausse ML, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat JC, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizo-sphere fluorescent pseudomonads. New Phytol 165:317–328

    Article  PubMed  Google Scholar 

  • Hacquard S (2016) Disentangling the factors shaping microbiota composition across the plant holobiont. New Phytol 209:454–457

    Article  PubMed  Google Scholar 

  • Hartmann A, Schmid M, Van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Heijden VD, Klironomos M, Moutoglis UJ, Streitwolf-Engel MP, Boller WR, Sanders A (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • Hiltner L (1904) Ãœberneuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arb DLG 98:59–78

    Google Scholar 

  • Jonsson LM, Nilsson MC, Wardle DA, Zackrisson O (2001) Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos 93:353–364

    Article  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320

    Article  CAS  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster S, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806

    Article  CAS  PubMed  Google Scholar 

  • Lemanceau P, Blouin M, Muller D, Moënne-Loccoz Y (2017) Let the core microbiota be functional. Trends Plant Sci 22:583–595

    Article  CAS  PubMed  Google Scholar 

  • Leveau JH, Preston GM (2008) Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction. New Phytol 177:859–876

    Article  PubMed  Google Scholar 

  • Levy A, Chang BJ, Abbott LK, Kuo J, Harnett G et al (2003) Invasion of spores of the arbuscular mycorrhizal fungus Gigaspora decipiens by Burkholderia spp. Appl Environ Microbiol 69:6250–6256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Application of free living plant growth-promoting rhizobacteria. Anton Leeuw Int J Gen Mol Microbiol 86:1–25

    Article  CAS  Google Scholar 

  • Lynch JM (1990) The rhizosphere. John Wiley, New York, NY

    Google Scholar 

  • Manetas Y (2012) Alice in the land of plants: biology of plants and their importance for planet. Springer, New York, NY, p 374

    Book  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Mitter B, Pfaffenbichler N, Sessitsch A (2016) Plant–microbe partnerships in 2020. Microb Biotechnol 9:635–640

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortíz-Castro R, Contreras Cornejo HA, Macías Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712

    Article  PubMed  PubMed Central  Google Scholar 

  • Pawlowski K, Demchenko KN (2012) The diversity of actinorhizal symbiosis. Protoplasma 249:967–979

    Article  PubMed  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111:743–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suda W, Nagasaki A, Shishido M (2009) Powdery mildew-infection changes bacterial community com- position in the phyllosphere. Microbes Environ 24:217–223

    Article  PubMed  Google Scholar 

  • Venturla B, Ravuru SKP, Vishnuvardhan AR (2013) Evaluation of bioagents and biofertilizers for the management of seed and seedling diseases of Sesamum indicum (Sessamum). E Sci J Plant Pathol 2:179–186

    Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  CAS  PubMed  Google Scholar 

  • Wang GM, Stribley DP, Tinker PB, Walker C (1993) Effects of pH on arbuscular mycorrhiza I. Field observations on the long-term liming experiments at Rothamsted and Woburn. New Phytol 124:465–472

    Article  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • White JF (2018) Evidence for widespread microbivory of endophytic bacteria in roots of vascular plants through oxidative degradation in root cell periplasmic spaces. In: Kumar A, Singh A, Singh V (eds) PGPR amelioration in sustainable agriculture. Elsevier, New York, NY

    Google Scholar 

  • Yadav KS, Dadarwal KR (1997) Phosphate solubilization and mobilization through soil microorganisms. In: Dadarwal KR (ed) Biotechnological approaches in soil microorganisms for sustainable crop production. CAB International, Wallingford, pp 293–308

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mala Trivedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mathur, M., Tiwari, R.K., Johri, P., Trivedi, M. (2023). Harnessing Rhizosphere Microbiomes in Crop Productivity. In: Singh, U.B., Kumar, R., Singh, H.B. (eds) Detection, Diagnosis and Management of Soil-borne Phytopathogens. Springer, Singapore. https://doi.org/10.1007/978-981-19-8307-8_16

Download citation

Publish with us

Policies and ethics