Skip to main content

RPA Revolution in the Healthcare Industry During COVID-19

  • Chapter
  • First Online:
Confluence of Artificial Intelligence and Robotic Process Automation

Abstract

Over the last year, the evolution in Robotic Process Automation (RPA) has been staggering. The automation it brings to applications has yielded efficiency, reduced operating costs, and decreased the time of research, development, and production. Industries have already integrated RPA into their workflow and are profoundly transforming into an intelligent automated industry with minimum human intervention, calling this the fourth industrial revolution. In this race of transformation, the healthcare industry is quite ahead of many other industries. It stood the test of time when COVID-19 was spreading rapidly and was also resilient against all odds. The system did experience an unprecedented crisis that depicted its weakness, fragility, and unpreparedness. The healthcare system was forced to adapt to a new paradigm. And though there was the loss of life and economy, we learned to evolve as a community to tackle this crisis. This chapter sheds light on the role of RPA and covers how these technologies can assist healthcare workers in their day-to-today activities, reviewing what the fourth industrial revolution would look like in the healthcare sector. The intelligent, automated system would provide a seamless experience of gathering information by various means, processing, and assisting healthcare workers to deliver quality treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wehde, M.: Healthcare 4.0. IEEE Eng. Manag. Rev. 47, 24–28 (2019)

    Google Scholar 

  2. Murdoch, T.B., Detsky, A.S.: The inevitable application of big data to health care. JAMA 309(1351) (2013)

    Google Scholar 

  3. Kruse, C.S., Goswamy, R., Raval, Y., Marawi, S.: Challenges and opportunities of Big Data in health care: a systematic review. JMIR Med. Inf. 4 (2016)

    Google Scholar 

  4. Ratia, M., Myllärniemi, J., Helander, N.: Robotic process automation—creating value by digitalizing work in the private healthcare?. In: Proceedings of the 22nd International Academic Mindtrek Conference (2018)

    Google Scholar 

  5. Lacity, M., Willcocks, L.P.: Innovating in service: the role and management of automation. Dyn. Innov. Outsourcing, 269–325 (2018)

    Google Scholar 

  6. Seuwou, P. (2021)

    Google Scholar 

  7. Wiljer, D., Hakim, Z.: Developing an artificial intelligence–enabled health care practice: Rewiring health care professions for better care. J. Med. Imaging Radiation Sci. 50 (2019)

    Google Scholar 

  8. Bhatnagar, N.: Role of robotic process automation in pharmaceutical industries. Adv. Intell. Syst. Comput. 497–504 (2019)

    Google Scholar 

  9. Dubey, A.: Bioinformatics & Proteomics open access journal committed to create value for researchers showcasing the. Impact (2020)

    Google Scholar 

  10. Sarker, S., Jamal, L., Ahmed, S.F., Irtisam, N.: Robotics and artificial intelligence in healthcare during COVID-19 pandemic: a systematic review. Robot. Auton. Syst. 146, 103902 (2021)

    Google Scholar 

  11. Jerry, J.: Use Of Robotic Process Automation (RPA) For Rapid Analysis And Interpretation Of Multidrug Resistant Organisms And COVID-19 Results | Antimicrobial Resistance And Infection Control; 10(SUPPL 1), 2021. | EMBASE. [Online]. Available: https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/covidwho-1448352. Accessed 25 Jun 2022

  12. Doğuç, Ö.: Robotic Process Automation (RPA) applications in covid-19. Contrib. Manag. Sci., 233–247 (2021)

    Google Scholar 

  13. Kedziora, D., Smolander, K.: Responding to healthcare emergency outbreak of COVID-19 pandemic with Robotic Process Automation (RPA). In: Proceedings of the Annual Hawaii International Conference on System Sciences (2022)

    Google Scholar 

  14. Kaur, J.: Getting started with cognitive robotic process automation, https://www.xenonstack.com/blog/cognitive-rpa

  15. Editor: Remote patient monitoring systems: Components, types, vendors, and implementation steps, https://www.altexsoft.com/blog/remote-patient-monitoring-systems/

  16. Wright, M.O., Perencevich, E.N., Novak, C., Hebden, J.N., Standiford, H.C., Harris, A.D.: Preliminary assessment of an automated surveillance system for infection control. Infect Control Hosp Epidemiol. 25(4), 325–332 (2004). https://doi.org/10.1086/502400. PMID: 15108731

    Article  Google Scholar 

  17. Sarker, I.H.: Machine learning: algorithms, real-world applications and research directions. SN Comput. Sci. 2, 160 (2021). https://doi.org/10.1007/s42979-021-00592-x

    Article  Google Scholar 

  18. Secinaro, S., Calandra, D., Secinaro, A., Muthurangu, V., Biancone, P.: The role of artificial intelligence in healthcare: a structured literature review. BMC Med. Inform. Decis. Mak. 10(21), 125. https://doi.org/10.1186/s12911-021-01488-9

  19. Burgos, N., Bottani, S., Faouzi, J., Thibeau-Sutre, E., Colliot, O.: Deep learning for brain disorders: from data processing to disease treatment. Brief. Bioinform. 22(22), 1560–1576. https://doi.org/10.1093/bib/bbaa310

  20. Hassabis, D., Kumaran, D., Summerfield, C., Botvinick, M.: Neuroscience-inspired artificial intelligence. Neuron 95, 245–258 (2017)

    Article  Google Scholar 

  21. Ulman, V., Svoboda, D., Nykter, M., Kozubek, M., Ruusuvuori, P.: Virtual Cell Imaging: a review on simulation methods employed in image cytometry. Cytometry A 89, 1057–1072 (2016)

    Article  Google Scholar 

  22. Floridi, L., Luetge, C., Pagallo, U.: Key ethical challenges in the European medical information framework. Mind. Mach. 29, 355–371 (2019)

    Article  Google Scholar 

  23. Mehrabi, N.: A Survey on Bias and Fairness in Machine Learning. [Online]. Available: https://arxiv.org/pdf/1908.09635.pdf. Accessed 25 Jun 2022

  24. Andruszkiewicz, D.: RPA application in the Pharmaceutical Industry

    Google Scholar 

  25. Mahmoodzadeh, S., Moazenzadeh, M., Rashidinejad, H., Sheikhvatan, M.: Diagnostic performance of electrocardiography in the assessment of significant coronary artery disease and its anatomical size in comparison with coronary angiography. J. Res. Med. Sci. 16(6), 750–5 (2011). PMID: 22091303; PMCID: PMC3214392

    Google Scholar 

  26. Ebrahimi, Z., Loni, M., Daneshtalab, M., Gharehbaghi, A.: A review on deep learning methods for ECG arrhythmia classification. Expert Syst. Appl. X 7, 100033 (2020)

    Google Scholar 

  27. Kakar, P.N., et al.: Robotic invasion of operation theatre and associated anaesthetic issues: a review. Indian J. Anaesth. 55(1), 18 (2011)

    Article  Google Scholar 

  28. Barnoy, Y. et al.: Robotic Surgery with Lean Reinforcement Learning (2021). arXiv.org. Available at: https://arxiv.org/abs/2105.01006. Accessed 22 August 2022

  29. Arulkumaran, K. et al.: A brief survey of Deep Reinforcement Learning (2017). arXiv.org. Available at: https://arxiv.org/abs/1708.05866. Accessed 22 August 2022

  30. Swazinna, P. et al.: Comparing Model-Free and Model-Based Algorithms for Offline Reinforcement Learning (2022). arXiv.org. Available at: https://arxiv.org/abs/2201.05433v1. Accessed 22 August 2022

  31. Shahrubudin, N., Lee, T.C., Ramlan, R.: An overview on 3D printing technology: technological, materials, and applications. Procedia Manuf. 35, 1286–1296 (2019)

    Article  Google Scholar 

  32. Savini, A., Savini, G.G.: A short history of 3D printing, a technological revolution just started. 2015 ICOHTEC/IEEE International History of High-Technologies and their Socio-Cultural Contexts Conference (HISTELCON) (2015)

    Google Scholar 

  33. Dodziuk, H.: Applications of 3D printing in Healthcare. Polish J. Cardio-Thoracic Surg. 3, 283–293 (2016)

    Article  Google Scholar 

  34. Banerjee, A. et al.: Artificial Intelligence in 3D printing: A revolution in health care. Lecture Notes in Bioengineering, pp. 57–79 (2021)

    Google Scholar 

  35. Doulgkeroglou, M.-N. et al.: Automation, monitoring, and standardization of cell product manufacturing. Fronti. Bioeng. Biotechnol., 8 (2020)

    Google Scholar 

  36. Peroglio, M., Gaspar, D., Zeugolis, D., Alini, M.: Relevance of bioreactors and whole tissue cultures for the translation of new therapies to humans. J. Orthop. Res. 36, 10–21 (2018)

    Google Scholar 

  37. Costariol, E., Rotondi, M., Amini, A., Hewitt, C., Nienow, A., Heathman, T., et al.: Establishing the scalable manufacture of primary human T-cells in an automated stirred-tank bioreactor. Biotechnol. Bioeng. 116, 2488–2502 (2019). https://doi.org/10.1002/bit.27088

    Article  Google Scholar 

  38. de Sousa Pinto, D., Bandeiras, C., De Almeida Fuzeta, M., Rodrigues, C., Jung, S., Hashimura, Y. et al.: Scalable manufacturing of human mesenchymal stromal cells in the vertical-wheel bioreactor system: an experimental and economic approach. Biotechnol. J. (2019)

    Google Scholar 

  39. Hamad, S., Derichsweiler, D., Papadopoulos, S., Nguemo, F., Šarić, T., Sachinidis, A., et al.: Generation of human induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer and scalable 3D suspension bioreactor cultures with reduced batch-to-batch variations. Theranostics 9, 7222–7238 (2019). https://doi.org/10.7150/thno.32058

    Article  Google Scholar 

  40. Sailem, H.Z., Rittscher, J., Pelkmans, L.: KCML: a machine-learning framework for inference of multi-scale gene functions from genetic perturbation screens. Mol. Syst. Biol. 16, e9083 (2020)

    Article  Google Scholar 

  41. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L.H., Aerts, H.: Journal artificial intelligence in radiology. Nat. Rev. Cancer 18, 500–510 (2018)

    Article  Google Scholar 

  42. McDonald, R.J., et al.: The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload. Acad. Radiol. 22(9), 1191–1198 (2015). PMID: 26210525

    Google Scholar 

  43. Fitzgerald, R.: Error in radiology. Clinical Radiol. 56, 938–946 (2001)

    Google Scholar 

  44. Willemink, M.J. et al.: Preparing medical imaging data for machine learning. Radiology. 295(1), https://doi.org/10.1148/radiol.2020192224. Epub, pp 4–15

  45. Krupinski, E.A.: Current perspectives in medical image perception. Atten. Percept Psychophys. 72(5). https://doi.org/10.3758/APP.72.5.1205. PMID: 20601701; PMCID: PMC3881280, pp. 1205–17

  46. Channin, D.S., Mongkolwat, P., Kleper, V., Rubin, D.L.: The annotation and Image Mark-Up project. Radiology 253, 590–592 (2009)

    Google Scholar 

  47. Yuan, J., Liao, H., Luo, R., Luo, J.: Automatic radiology report generation based on multi-view image fusion and medical concept enrichment. In: Lecture Notes in Computer Science, pp. 721–729 (2019)

    Google Scholar 

  48. Paul, D., Sanap, G., Shenoy, S., Kalyane, D., Kalia, K., Tekade, R.K.: Artificial Intelligence in drug discovery and development. Drug Discov. Today 26, 80–93 (2021)

    Google Scholar 

  49. Lavecchia, A.: Deep learning in drug discovery: Opportunities, challenges and future prospects. Drug Discov. Today 24, 2017–2032 (2019)

    Google Scholar 

  50. Hurst, W.J., Mortimer, J.W., V.C.H. Publishers, Inc.: Beach deerfield, and USA FL, “US$24.95,” J. Chemometrics 2, 298–298 (1987)

    Google Scholar 

  51. Ward, K.B., Ann Perozzo, M., M.Zuk, W. : Automatic preparation of protein crystals using laboratory robotics and automated visual inspection. [Online]. Available: https://doi.org/10.1016/0022-0248(88)90328-4. Accessed 25 Jun 2022

  52. Wu, F., Yang, R., Zhang, C., Zhang, L.: A deep learning framework combined with word embedding to identify DNA replication origins. Scientific Reports, vol. 11 (2021)

    Google Scholar 

  53. Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.: D.: Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Netw. 8, 98–113 (1997)

    Article  Google Scholar 

  54. Sherstinsky, A.: Fundamentals of Recurrent Neural Network (RNN) and long short-term memory (LSTM) network

    Google Scholar 

  55. Park, S. et al. C.: [PDF] Vision Transformer for Covid-19 CXR diagnosis using chest X-ray feature corpus: Semantic scholar

    Google Scholar 

  56. Tucker, A., Wang, Z., Rotalinti, Y., Myles, P.: Generating high-fidelity synthetic patient data for assessing machine learning healthcare software. npj Digital Medicine (2020)

    Google Scholar 

  57. DuMont Schütte, A.P. et al.: Overcoming barriers to data sharing with medical image generation: a comprehensive evaluation. npj Digital Med. (2021)

    Google Scholar 

  58. Bank, D., Koenigstein, N., Giryes, R.: Autoencoders

    Google Scholar 

  59. Torfi, A., Fox, E.A., Reddy, C.K.: Differentially private synthetic medical data generation using convolutional Gans. Inf. Sci. 586, 485–500 (2022)

    Google Scholar 

  60. Kingma, D.P., Welling, M.: Auto-encoding Variational Bayes, ArXiv preprint arXiv: 1312.6114 (2013)

    Google Scholar 

  61. Feldman, K., Hazekamp, N., Chawla, N.V.: Mining the clinical narrative: All text are not equal. In: 2016 IEEE International Conference on Healthcare Informatics (ICHI) (2016)

    Google Scholar 

  62. Brown, T.B. et al., Language models are few-shot learners

    Google Scholar 

  63. Lehmann, L.S.: Ethical challenges of integrating AI into healthcare. artificial intelligence in medicine. In: Group of Young: 8 Ethical Issues in the use of Robots in Healthcare, pp. 1–5 (2021)

    Google Scholar 

  64. Weinreb, R.N., Aung, T., Medeiros, F.A.: The pathophysiology and treatment of glaucoma: a review. JAMA 14(311)(18), 1901-11(2014).https://doi.org/10.1001/jama.2014.3192. PMID:24825645;PMCID:PMC4523637

  65. Thainimit, S., Chaipayom, P., Sa-arnwong, N., Gansawat, D., Petchyim, S., Pongrujikorn, S.: Robotic process automation support in telemedicine: glaucoma screening usage case. Inf. Med. Unlocked 31, 101001 (2022)

    Google Scholar 

  66. Sorin, V., Barash, Y., Konen, E., Klang, E.: Deep Learning for Natural Language Processing in radiology—fundamentals and a systematic review. J. Amer. College Radiol. 17, 639–648 (2020)

    Google Scholar 

  67. Lam, P.Y., Chow, S.C., Lai, J.S., Choy, B.N.: A review on the use of telemedicine in glaucoma and possible roles in covid-19 Outbreak. Surv. Ophthalmol. 66, 999–1008 (2021)

    Article  Google Scholar 

  68. Mahase, E.: Covid-19: Who declares pandemic because of “alarming levels” of spread, severity, and inaction. BMJ. m1036 (2020)

    Google Scholar 

  69. Mofatteh, M.: Neurosurgery and artificial intelligence. AIMS Neurosci 2021(8), 477–495 (2021). https://doi.org/10.3934/Neuroscience.2021025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilesh Harshit Barla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barla, N.H., Almeida, S.M., Almeida, M.S. (2023). RPA Revolution in the Healthcare Industry During COVID-19. In: Bhattacharyya, S., Banerjee, J.S., De, D. (eds) Confluence of Artificial Intelligence and Robotic Process Automation. Smart Innovation, Systems and Technologies, vol 335. Springer, Singapore. https://doi.org/10.1007/978-981-19-8296-5_9

Download citation

Publish with us

Policies and ethics