Skip to main content

Leishmaniasis: Tissue Tropism in Relation to the Species Diversity

  • Chapter
  • First Online:
Pathobiology of Parasitic Protozoa: Dynamics and Dimensions

Abstract

Leishmania is a vector-borne, obligatory, and anaerobic protozoan parasite that causes a spectrum of clinical conditions in its hosts. The disease has several outcomes and targets different parts of the host body ranging from infection in the dermal to the visceral organs. The fate of this disease depends highly on the availability of specific drugs and their penetration into the precise location of pathogen residence. Unavailability of specific medicines can and has caused death worldwide. This decision of sustenance vs. remission depends on various factors such as initial encounters of the host immune system with the pathogen during entry and the level of dissemination allowed after that. This in turn highly depends on nutritional availability and safe residence for the parasite inside the host system and, hence, to be precise its tropism. Therefore, to understand disease pathogenesis, it is important to explore pathogen-host interactions in light of their tropism. This chapter discusses several manifestations following Leishmania invasion into their mammalian host and the factors responsible for them. We also summarize various exceptions and their possible reasons including both parasitic and host-related factors influencing different disease outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, Sereno D. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl Trop Dis. 2016;10(3):e0004349.

    Article  Google Scholar 

  2. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, Boer MD, WHO Leishmaniasis Control Team. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7(5):e35671.

    Article  CAS  Google Scholar 

  3. WHO, 2021. Leishmaniasis [WWW document]. WHO. URL. https://www.who.int/health-topics/Leishmaniasis.

  4. McCall LI, Siqueira-Neto JL, McKerrow JH. Location, location, location: five facts about tissue tropism and pathogenesis. PLoS Pathog. 2016;12(5):e1005519.

    Article  Google Scholar 

  5. McCall LI. Quo vadis? Central rules of pathogen and disease tropism. Front Cell Infect Microbiol. 2021;25(11):640987.

    Article  Google Scholar 

  6. MacMorris-Adix M. Leishmaniasis: a review of the disease and the debate over the origin and dispersal of the causaitive parasite Leishmania. Macalester Reviews in Biogeography. 2008;1(1):2.

    Google Scholar 

  7. David CV, Craft N. Cutaneous and mucocutaneous leishmaniasis. Dermatol Ther. 2009;22(6):491–502.

    Article  Google Scholar 

  8. Abadías-Granado I, Diago A, Cerro PA, Palma-Ruiz AM, Gilaberte Y. Cutaneous and mucocutaneous leishmaniasis. Actas Dermo-Sifiliográficas (English Edition). 2021;112(7):601–18.

    Article  Google Scholar 

  9. Reithinger R, Dujardin JC, Louzir H, Pirmez C, Alexander B, Brooker S. Cutaneous leishmaniasis. Lancet Infect Dis. 2007;7(9):581–96.

    Article  Google Scholar 

  10. Maatallah IA, Akarid K, Lemrani M. Tissue tropism: is it an intrinsic characteristic of Leishmania species? Acta Trop. 2022;12:106512.

    Article  Google Scholar 

  11. Awasthi A, Mathur RK, Saha B. Immune response to Leishmania infection. Indian J Med Res. 2004;1(119):238–58.

    Google Scholar 

  12. Dirkx L, Hendrickx S, Merlot M, Bulté D, Starick M, Elst J, Bafica A, Ebo DG, Maes L, Van Weyenbergh J, Caljon G. Long-term hematopoietic stem cells as a parasite niche during treatment failure in visceral leishmaniasis. Commun Biol. 2022;5(1):1–5.

    Article  Google Scholar 

  13. Centers for Disease Control (CDC. Viscerotropic leishmaniasis in persons returning from Operation Desert Storm--1990-1991. MMWR Morb Mortal Wkly Rep. 1992;41(8):131–4.

    Google Scholar 

  14. Mcgwire BS, Satoskar AR. Leishmaniasis: clinical syndromes and treatment. QJM An Int J Med. 2014;107(1):7–14.

    Article  CAS  Google Scholar 

  15. Alvar J, Aparicio P, Aseffa A, Den Boer M, Canavate C, Dedet JP, Gradoni L, Ter Horst R, López-Vélez R, Moreno J. The relationship between leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev. 2008 Apr;21(2):334–59.

    Article  CAS  Google Scholar 

  16. Gramiccia M. The identification and variability of the parasites causing leishmaniasis in HIV-positive patients in Italy. Ann Trop Med Parasitol. 2003;97(sup1):65–73.

    Article  Google Scholar 

  17. Jafari S, Hajiabdolbaghi M, Mohebali M, Hajjaran H, Hashemian H. Disseminated leishmaniasis caused by Leishmania tropica in HIV-positive patients in the Islamic Republic of Iran. EMHJ-Eastern Mediterranean Health J. 2010;16(3):340–3.

    Article  CAS  Google Scholar 

  18. Liautaud B, Vignier N, Miossec C, Plumelle Y, Kone M, Delta D, Ravel C, Cabié A, Desbois N. First case of visceral leishmaniasis caused by Leishmania martiniquensis. Am J Trop Med Hygiene. 2015;92(2):317.

    Article  Google Scholar 

  19. Rioux JA, Lanotte G, Maazoun R, Perello R, Pratlong F. Leishmania infantum Nicolle, 1908, the agent of the autochthonous oriental sore. Apropos of the biochemical identification of 2 strains isolated in the eastern Pyrenees. Comptes Rendus des Seances de L’academie des sciences. Serie D, Sciences Naturelles. 1980;291(8):701–3.

    CAS  Google Scholar 

  20. Kbaich MA, Mhaidi I, Ezzahidi A, Dersi N, El Hamouchi A, Riyad M, Akarid K, Lemrani M. New epidemiological pattern of cutaneous leishmaniasis in two pre-Saharan arid provinces, southern Morocco. Acta Trop. 2017;173:11–6.

    Article  Google Scholar 

  21. Asmae H, Fatima A, Hajiba F, Mbarek K, Khadija B, Mohamed R, Faiza S. Coexistence of Leishmania tropica and Leishmania infantum in Sefrou province, Morocco. Acta tropica. 2014;130:94–9.

    Article  Google Scholar 

  22. Hakkour M, Hmamouch A, El Alem MM, Rhalem A, Amarir F, Touzani M, Sadak A, Fellah H, Sebti F. New epidemiological aspects of visceral and cutaneous leishmaniasis in Taza Morocco. Parasit Vector. 2016;9(1):1–9.

    Article  Google Scholar 

  23. Baker JR. The origins of parasitism in the protists. Int J Parasitol. 1994;24(8):1131–7.

    Article  CAS  Google Scholar 

  24. Sleigh MA. The nature of protozoa. In: Kreier JP, Baker JR, editors. Parasitic Protozoa. San Diego: Academic Press; 1991. p. l–53.

    Google Scholar 

  25. Flegontov P, Votýpka J, Skalický T, Logacheva MD, Penin AA, Tanifuji G, Onodera NT, Kondrashov AS, Volf P, Archibald JM, Lukeš J. Paratrypanosoma is a novel early-branching trypanosomatid. Curr Biol. 2013;23(18):1787–93.

    Article  CAS  Google Scholar 

  26. Stevens JR. Free-living bodonids and derived parasitic trypanosomatids: but what lies in between? Trends Parasitol. 2014;30(3):113–4.

    Article  Google Scholar 

  27. Steverding D. The history of leishmaniasis. Parasit Vectors. 2017;10(1):1–0.

    Article  Google Scholar 

  28. Shatova SM, Shul’ga MA, Saf’ianova VM, Avakian AA. Comparative electron microscopy study of Leishmania major and L. tropica in experimental infestation of the sandfly Phlebotomus papatasi. Parazitologiia. 1984;18(2):154–9.

    CAS  Google Scholar 

  29. Lawyer PG, Ngumbi PM, Anjili CO, Odongo SO, Mebrahtu YB, Githure JI, Koech DK, Roberts CR. Development of Leishmania major in Phlebotomus duboscqi and Sergentomyia schwetzi (Diptera: Psychodidae). Am J Trop Med Hygiene. 1990;43(1):31–43.

    Article  CAS  Google Scholar 

  30. Schlein Y, Jacobson RL. Resistance of Phlebotomus papatasi to infection with Leishmania donovani is modulated by components of the infective bloodmeal. Parasitology. 1998;117(5):467–73.

    Article  Google Scholar 

  31. Adler S. Factors determining the behaviour of Leishmania sp. in sandflies. Harefuah. 1938;14:1–2.

    Google Scholar 

  32. Rogers ME, Chance ML, Bates PA. The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis. Parasitology. 2002;124(5):495–507.

    Article  CAS  Google Scholar 

  33. Pimenta PF, Modi GB, Pereira ST, Shahabuddin M, Sacks DL. A novel role for the peritrophic matrix in protecting Leishmania from the hydrolytic activities of the sand fly midgut. Parasitology. 1997;115(4):359–69.

    Article  Google Scholar 

  34. Maia C, Seblova V, Sadlova J, Votypka J, Volf P. Experimental transmission of Leishmania infantum by two major vectors: a comparison between a viscerotropic and a dermotropic strain. PLoS Negl Trop Dis. 2011;5(6):e1181.

    Article  Google Scholar 

  35. Ribeiro-Romão RP, Moreira OC, Osorio EY, Cysne-Finkelstein L, Gomes-Silva A, Valverde JG, Pirmez C, Da-Cruz AM, Pinto EF. Comparative evaluation of lesion development, tissue damage, and cytokine expression in golden hamsters (Mesocricetus auratus) infected by inocula with different Leishmania (Viannia) braziliensis concentrations. Infect Immun. 2014;82(12):5203–13.

    Article  Google Scholar 

  36. Rogers ME, Bates PA. Leishmania manipulation of sand fly feeding behavior results in enhanced transmission. PLoS Pathog. 2007;3(6):e91.

    Article  Google Scholar 

  37. Kimblin N, Peters N, Debrabant A, Secundino N, Egen J, Lawyer P, Fay MP, Kamhawi S, Sacks D. Quantification of the infectious dose of Leishmania major transmitted to the skin by single sand flies. Proc Natl Acad Sci. 2008;105(29):10125–30.

    Article  CAS  Google Scholar 

  38. Rostamian M, Jafari D, Abolghazi M, Farahani H, Niknam HM. Leishmania tropica: suggestive evidences for the effect of infectious dose on pathogenicity and immunogenicity in an experimental model. Parasitol Res. 2018;117(9):2949–56.

    Article  Google Scholar 

  39. Cecílio P, Cordeiro-da-Silva A, Oliveira F. Sand flies: basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Commun Biol. 2022;5(1):1–2.

    Article  Google Scholar 

  40. Warburg A, Saraiva E, Lanzaro GC, Titus RG, Neva F. Saliva of Lutzomyia longipalpis sibling species differs in its composition and capacity to enhance leishmaniasis. Philos Trans Royal Soc London Series B: Biol Sci. 1994;345(1312):223–30.

    Article  CAS  Google Scholar 

  41. Valdivia HO, Almeida LV, Roatt BM, Reis-Cunha JL, Pereira AA, Gontijo C, Fujiwara RT, Reis AB, Sanders MJ, Cotton JA, Bartholomeu DC. Comparative genomics of canine-isolated Leishmania (Leishmania) amazonensis from an endemic focus of visceral leishmaniasis in Governador Valadares, southeastern Brazil. Sci Rep. 2017;7(1):1–1.

    Article  Google Scholar 

  42. Cardoso MS, Bento GA, de Almeida LV, de Castro JC, Reis-Cunha JL, Barbosa VD, de Souza CF, Brazil RP, Valdivia HO, Bartholomeu DC. Detection of multiple circulating Leishmania species in Lutzomyia longipalpis in the city of Governador Valadares, southeastern Brazil. PLoS One. 2019;14(2):e0211831.

    Article  CAS  Google Scholar 

  43. Lerner EA, Iuga AO, Reddy VB. Maxadilan, a PAC1 receptor agonist from sand flies. Peptides. 2007;28(9):1651–4.

    Article  CAS  Google Scholar 

  44. Scorza BM, Wacker MA, Messingham K, Kim P, Klingelhutz A, Fairley J, Wilson ME. Differential activation of human keratinocytes by Leishmania species causing localized or disseminated disease. J Investig Dermatol. 2017;137(10):2149–56.

    Article  CAS  Google Scholar 

  45. Diefenbach A, Schindler H, Donhauser N, Lorenz E, Laskay T, MacMicking J, Röllinghoff M, Gresser I, Bogdan C. Type 1 interferon (IFNα/β) and type 2 nitric oxide synthase regulate the innate immune response to a protozoan parasite. Immunity. 1998;8(1):77–87.

    Article  CAS  Google Scholar 

  46. Kariyawasam KK, Selvapandiyan A, Siriwardana HV, Dube A, Karunanayake P, Senanayake SA, Dey R, Gannavaram S, Nakhasi HL, Karunaweera ND. Dermotropic Leishmania donovani in Sri Lanka: visceralizing potential in clinical and preclinical studies. Parasitology. 2018;145(4):443–52.

    Article  CAS  Google Scholar 

  47. Cardoso CA, Araujo GV, Sandoval CM, Nogueira PM, Zúniga C, Sosa-Ochoa WH, Laurenti MD, Soares RP. Lipophosphoglycans from dermotropic Leishmania infantum are more pro-inflammatory than those from viscerotropic strains. Mem Inst Oswaldo Cruz. 2020;21:115.

    Google Scholar 

  48. Gregory DJ, Sladek R, Olivier M, Matlashewski G. Comparison of the effects of Leishmania major or Leishmania donovani infection on macrophage gene expression. Infect Immun. 2008;76(3):1186–92.

    Article  CAS  Google Scholar 

  49. Scott P, Novais FO. Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nat Rev Immunol. 2016;16(9):581–92.

    Article  CAS  Google Scholar 

  50. Karmakar S, Nath S, Sarkar B, Chakraborty S, Paul S, Karan M, Pal C. Insect vectors’ saliva and gut microbiota as a blessing in disguise: probability versus possibility. Future Microbiol. 2021;16(9):657–70.

    Article  CAS  Google Scholar 

  51. Rocha MI, Dias F, Resende M, Sousa M, Duarte M, Tomas AM, Castro H. Leishmania infantum enhances migration of macrophages via a phosphoinositide 3-kinase γ-dependent pathway. ACS Infect Dis. 2020;6(7):1643–9.

    Article  CAS  Google Scholar 

  52. Ansari NA, Katara GK, Ramesh V, Salotra P. Evidence for involvement of TNFR1 and TIMPs in pathogenesis of post-kala-azar dermal leishmaniasis. Clin Exp Immunol. 2008;154(3):391–8.

    Article  CAS  Google Scholar 

  53. Maretti-Mira AC, de Pinho Rodrigues KM, de Oliveira-Neto MP, Pirmez C, Craft N. MMP-9 activity is induced by Leishmania braziliensis infection and correlates with mucosal leishmaniasis. Acta Trop. 2011;119(2–3):160–4.

    Article  CAS  Google Scholar 

  54. Negrao F, Abanades DR, Jaeeger CF, Rocha DF, Belaz KR, Giorgio S, Eberlin MN, Angolini CF. Lipidomic alterations of in vitro macrophage infection by L. infantum and L. amazonensis. Mol BioSyst. 2017;13(11):2401–6.

    Article  CAS  Google Scholar 

  55. de Freitas Balanco JM, Moreira ME, Bonomo A, Bozza PT, Amarante-Mendes G, Pirmez C, Barcinski MA. Apoptotic mimicry by an obligate intracellular parasite downregulates macrophage microbicidal activity. Curr Biol. 2001;11(23):1870–3.

    Article  Google Scholar 

  56. Oliveira WN, Ribeiro LE, Schrieffer A, Machado P, Carvalho EM, Bacellar O. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of human tegumentary leishmaniasis. Cytokine. 2014;66(2):127–32.

    Article  CAS  Google Scholar 

  57. Cotterell SE, Engwerda CR, Kaye PM. Leishmania donovani infection of bone marrow stromal macrophages selectively enhances myelopoiesis, by a mechanism involving GM-CSF and TNF-α. Blood J Am Soc Hematol. 2000;95(5):1642–51.

    CAS  Google Scholar 

  58. Quiñonez-Díaz L, Mancilla-Ramírez J, Avila-García M, Ortiz-Avalos J, Berron A, González S, Paredes Y, Galindo-Sevilla N. Effect of ambient temperature on the clinical manifestations of experimental diffuse cutaneous leishmaniasis in a rodent model. Vector-Borne Zoonotic Dis. 2012;12(10):851–60.

    Article  Google Scholar 

  59. Lypaczewski P, Hoshizaki J, Zhang WW, McCall LI, Torcivia-Rodriguez J, Simonyan V, Kaur A, Dewar K, Matlashewski G. A complete Leishmania donovani reference genome identifies novel genetic variations associated with virulence. Sci Rep. 2018;8(1):1–4.

    Article  CAS  Google Scholar 

  60. Zhang WW, Matlashewski G. Characterization of the A2–A2rel gene cluster in Leishmania donovani: involvement of A2 in visceralization during infection. Mol Microbiol. 2001;39(4):935–48.

    Article  CAS  Google Scholar 

  61. Zhang WW, Mendez S, Ghosh A, Myler P, Ivens A, Clos J, Sacks DL, Matlashewski G. Comparison of the A2 gene locus in Leishmania donovani and Leishmania major and its control over cutaneous infection. J Biol Chem. 2003;278(37):35508–15.

    Article  CAS  Google Scholar 

  62. Zhang WW, Matlashewski G. Loss of virulence in Leishmania donovani deficient in an amastigote-specific protein, A2. Proc Natl Acad Sci. 1997;94(16):8807–11.

    Article  CAS  Google Scholar 

  63. Sharma P, Gurumurthy S, Duncan R, Nakhasi HL, Salotra P. Comparative in vivo expression of amastigote up regulated Leishmania genes in three different forms of Leishmaniasis. Parasitol Int. 2010;59(2):262–4.

    Article  CAS  Google Scholar 

  64. Zhang WW, Matlashewski G. Screening Leishmania donovani-specific genes required for visceral infection. Mol Microbiol. 2010;77(2):505–17.

    Article  CAS  Google Scholar 

  65. Zhang WW, Chan KF, Song Z, Matlashewski G. Expression of a Leishmania donovani nucleotide sugar transporter in Leishmania major enhances survival in visceral organs. Exp Parasitol. 2011;129(4):337–45.

    Article  CAS  Google Scholar 

  66. Ghoshal A, Gerwig GJ, Kamerling JP, Mandal C. Sialic acids in different Leishmania sp., its correlation with nitric oxide resistance and host responses. Glycobiology. 2010;20(5):553–66.

    Article  CAS  Google Scholar 

  67. Zijlstra EE. PKDL and other dermal lesions in HIV co-infected patients with leishmaniasis: review of clinical presentation in relation to immune responses. PLoS Negl Trop Dis. 2014;8(11):e3258.

    Article  Google Scholar 

  68. Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA, Peters N, Adlem E, Tivey A, Aslett M, Kerhornou A. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet. 2007;39(7):839–47.

    Article  CAS  Google Scholar 

  69. Rogers MB, Hilley JD, Dickens NJ, Wilkes J, Bates PA, Depledge DP, Harris D, Her Y, Herzyk P, Imamura H, Otto TD. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res. 2011;21(12):2129–42.

    Article  CAS  Google Scholar 

  70. Lypaczewski P, Matlashewski G. Leishmania donovani hybridisation and introgression in nature: a comparative genomic investigation. Lancet Microbe. 2021;2(6):e250–8.

    Article  CAS  Google Scholar 

  71. Lypaczewski P, Zhang WW, Matlashewski G. Evidence that a naturally occurring single nucleotide polymorphism in the RagC gene of Leishmania donovani contributes to reduced virulence. PLoS Negl Trop Dis. 2021;15(2):e0009079.

    Article  CAS  Google Scholar 

  72. Zhang WW, Ramasamy G, McCall LI, Haydock A, Ranasinghe S, Abeygunasekara P, Sirimanna G, Wickremasinghe R, Myler P, Matlashewski G. Genetic analysis of Leishmania donovani tropism using a naturally attenuated cutaneous strain. PLoS Pathog. 2014;10(7):e1004244.

    Article  Google Scholar 

  73. Zhang WW, Peacock CS, Matlashewski G. A genomic-based approach combining in vivo selection in mice to identify a novel virulence gene in Leishmania. PLoS Negl Trop Dis. 2008;2(6):e248.

    Article  Google Scholar 

  74. Mukhopadhyay D, Dalton JE, Kaye PM, Chatterjee M. Post kala-azar dermal leishmaniasis: an unresolved mystery. Trends Parasitol. 2014;30(2):65–74.

    Article  Google Scholar 

  75. Baek KH, Piel L, Rosazza T, Prina E, Späth GF, No JH. Infectivity and drug susceptibility profiling of different Leishmania-host cell combinations. Pathogens. 2020;9(5):393.

    Article  CAS  Google Scholar 

  76. Wijnant GJ, Dumetz F, Dirkx L, Bulte D, Cuypers B, Van Bocxlaer K, Hendrickx S. Tackling drug resistance and other causes of treatment failure in Leishmaniasis. Front Trop Dis. 2022;3:837460. https://doi.org/10.3389/fitd.2022.837460.

    Article  Google Scholar 

  77. Ghosh S, Roy K, Rajalingam R, Martin S, Pal C. Cytokines in the generation and function of regulatory T cell subsets in leishmaniasis. Cytokine. 2021;147:155266.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiranjib Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, S., Nath, S., Roy, K., Karmakar, S., Pal, C. (2023). Leishmaniasis: Tissue Tropism in Relation to the Species Diversity. In: Mukherjee, B., Bhattacharya, A., Mukhopadhyay, R., Aguiar, B.G.A. (eds) Pathobiology of Parasitic Protozoa: Dynamics and Dimensions. Springer, Singapore. https://doi.org/10.1007/978-981-19-8225-5_7

Download citation

Publish with us

Policies and ethics