Skip to main content

Microbiome Data Analysis and Interpretation: Correlation Inference and Dynamic Pattern Discovery

  • Chapter
  • First Online:
Methodologies of Multi-Omics Data Integration and Data Mining

Part of the book series: Translational Bioinformatics ((TRBIO,volume 19))

  • 932 Accesses

Abstract

Microbial communities are everywhere within our bodies and in the environments (Byrd et al. n.d.), which play a key role in human health and all critical nutrient cycles on earth. The microbiome refers to the entire micro-environment, including microorganisms, genomes, and the surrounding environment. With the development of high-throughput sequencing (HTS) technology and data analysis methods, the role of the microbiome in humans, animals, plants, and the environment has become increasingly clear in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alneberg J, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11(11):1144–6.

    Article  CAS  Google Scholar 

  • Aßhauer KP, et al. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics. 2015;31(17):2882–4.

    Article  Google Scholar 

  • Bankevich A, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77.

    Article  CAS  Google Scholar 

  • de Sena Brandine G, Smith AD. Falco: high-speed FastQC emulation for quality control of sequencing data. F1000Res. 2019b;8:1874.

    Article  Google Scholar 

  • Blin K, et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47(W1):W81–7.

    Article  CAS  Google Scholar 

  • Boisvert S, et al. Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol. 2012;13(12):R122.

    Article  Google Scholar 

  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.

    Article  CAS  Google Scholar 

  • Bray NL, et al. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525–7.

    Article  CAS  Google Scholar 

  • Breitwieser FP, Lu J, Salzberg SL. A review of methods and databases for metagenomic classification and assembly. Brief Bioinform. 2019;20(4):1125–36.

    Article  CAS  Google Scholar 

  • Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60.

    Article  CAS  Google Scholar 

  • Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018;16(3):143–55.

    Article  CAS  Google Scholar 

  • Callahan BJ, et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–3.

    Article  CAS  Google Scholar 

  • Camacho C, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10(1):421.

    Article  Google Scholar 

  • Caporaso JG, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6.

    Article  CAS  Google Scholar 

  • Chen C, et al. Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods. PLoS One. 2011;6(2):–e17238.

    Google Scholar 

  • Chiu CY, Miller SA. Clinical metagenomics. Nat Rev Genet. 2019;20(6):341–55.

    Article  CAS  Google Scholar 

  • Crusoe MR, et al. The khmer software package: enabling efficient nucleotide sequence analysis. F1000Res. 2015;4:900.

    Article  Google Scholar 

  • Di Bella JM, et al. High throughput sequencing methods and analysis for microbiome research. J Microbiol Methods. 2013;95(3):401–14.

    Article  Google Scholar 

  • Douglas GM, Beiko RG, Langille MGI. Predicting the functional potential of the microbiome from marker genes using PICRUSt. In: Beiko RG, Hsiao W, Parkinson J, editors. Microbiome analysis: methods and protocols. New York, NY: Springer New York; 2018. p. 169–77.

    Chapter  Google Scholar 

  • Douglas GM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38(6):685–8.

    Article  CAS  Google Scholar 

  • Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996–8.

    Article  CAS  Google Scholar 

  • Franzosa EA, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol. 2019;4(2):293–305.

    Article  CAS  Google Scholar 

  • Franzosa EA, et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat Methods. 2018;15(11):962–8.

    Article  CAS  Google Scholar 

  • Gleeson M, et al. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011;11(9):607–15.

    Article  CAS  Google Scholar 

  • Huson DH, et al. MEGAN analysis of metagenomic data. Genome Res. 2007;17(3):377–86.

    Article  CAS  Google Scholar 

  • Institute., D.J.G. BBDuk guide, 2021.

    Google Scholar 

  • Keegan KP, Glass EM, Meyer F. MG-RAST, a metagenomics service for analysis of microbial community structure and function. Methods Mol Biol. 2016;1399:207–33.

    Article  CAS  Google Scholar 

  • Kim D, et al. Optimizing methods and dodging pitfalls in microbiome research. Microbiome. 2017;5(1):52.

    Article  Google Scholar 

  • Kishikawa T, et al. Metagenome-wide association study of gut microbiome revealed novel aetiology of rheumatoid arthritis in the Japanese population. Ann Rheum Dis. 2020;79(1):103–11.

    Article  CAS  Google Scholar 

  • Knight R, et al. Best practices for analysing microbiomes. Nat Rev Microbiol. 2018;16(7):410–22.

    Article  CAS  Google Scholar 

  • Kuczynski J, et al. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Microbiol. 2012;27(1):1E.5.1–1E.5.20.

    Article  Google Scholar 

  • Kultima JR, et al. MOCAT: a metagenomics assembly and gene prediction toolkit. PLoS One. 2012;7(10):e47656.

    Article  Google Scholar 

  • Kultima JR, et al. MOCAT2: a metagenomic assembly, annotation and profiling framework. Bioinformatics. 2016;32(16):2520–3.

    Article  CAS  Google Scholar 

  • Langille MGI, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814–21.

    Article  CAS  Google Scholar 

  • Liu Y, et al. Methods and applications for microbiome data analysis. Yi chuan = Hereditas. 2019;41(9):845–62.

    Google Scholar 

  • Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71(12):8228–35.

    Article  CAS  Google Scholar 

  • Lu YY, et al. COCACOLA: binning metagenomic contigs using sequence COmposition, read CoverAge, CO-alignment and paired-end read LinkAge. Bioinformatics (Oxford, England). 2017;33(6):791–8.

    CAS  Google Scholar 

  • Luo J, et al. A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data. Pharmacogenomics J. 2010;10(4):278–91.

    Article  CAS  Google Scholar 

  • Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal. 2011.

    Google Scholar 

  • Medema MH, et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011;39(suppl_2):W339–46.

    Article  CAS  Google Scholar 

  • Merelli I, Viti F, Milanesi L. IBDsite: a Galaxy-interacting, integrative database for supporting inflammatory bowel disease high throughput data analysis. BMC Bioinformatics. 2012;13(14):S5.

    Article  Google Scholar 

  • Monzoorul Haque M, et al. SOrt-ITEMS: sequence orthology based approach for improved taxonomic estimation of metagenomic sequences. Bioinformatics (Oxford, England). 2009;25(14):1722–30.

    Article  CAS  Google Scholar 

  • Nowrotek M, et al. Culturomics and metagenomics: in understanding of environmental resistome. Front Environ Sci Eng. 2019;13(3):40.

    Article  Google Scholar 

  • Nurk S, et al. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27(5):824–34.

    Article  CAS  Google Scholar 

  • Oulas A, et al. Metagenomics: tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. Bioinf Biol Insights. 2015;9:BBI.S12462.

    Article  Google Scholar 

  • Ounit R, Lonardi S. Higher classification sensitivity of short metagenomic reads with CLARK-S. Bioinformatics. 2016;32(24):3823–5.

    Article  CAS  Google Scholar 

  • Papageorgiou L, et al. Genomic big data hitting the storage bottleneck. EMBnetjournal. 2018;24:e910.

    Google Scholar 

  • Peng Y, et al. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28(11):1420–8.

    Article  CAS  Google Scholar 

  • Qin J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.

    Article  CAS  Google Scholar 

  • Rognes T, et al. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.

    Article  Google Scholar 

  • Ruairi Robertson P. 16S rRNA Gene Sequencing vs. Shotgun Metagenomic Sequencing https://blog.microbiomeinsights.com/16s-rrna-sequencing-vs-shotgun-metagenomic-sequencing. 2020.7.20.

  • Sangwan N, Xia F, Gilbert JA. Recovering complete and draft population genomes from metagenome datasets. Microbiome. 2016;4(1):8.

    Article  Google Scholar 

  • Schloss PD. Reintroducing mothur: 10 Years Later. Appl Environ Microbiol. 2020;86(2).

    Google Scholar 

  • Schuler CJ, Fau-Hirsch M, et al. Learning to Deblur, 2015.

    Google Scholar 

  • Segata N, et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods. 2012;9(8):811–4.

    Article  CAS  Google Scholar 

  • Sharon G, et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell. 2019;177(6):1600–18.e17

    Article  CAS  Google Scholar 

  • Sunagawa S, et al. Metagenomic species profiling using universal phylogenetic marker genes. Nat Methods. 2013;10(12):1196–9.

    Article  CAS  Google Scholar 

  • Tedersoo L, et al. High-throughput identification and diagnostics of pathogens and pests: overview and practical recommendations. Mol Ecol Resour. 2019;19(1):47–76.

    Article  Google Scholar 

  • Treangen TJ, et al. MetAMOS: a modular and open source metagenomic assembly and analysis pipeline. Genome Biol. 2013;14(1):R2.

    Article  Google Scholar 

  • Truong DT, et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods. 2015;12(10):902–3.

    Article  CAS  Google Scholar 

  • Vakhlu J, Sudan AK, Johri BN. Metagenomics: future of microbial gene mining. Indian J Microbiol. 2008;48(2):202–15.

    Article  CAS  Google Scholar 

  • Wang Z, et al. Time-course relationship between environmental factors and microbial diversity in tobacco soil. Sci Rep. 2019;9(1):19969.

    Article  CAS  Google Scholar 

  • Wingett SW, Andrews S. FastQ Screen: a tool for multi-genome mapping and quality control. F1000Res. 2018;7:1338.

    Article  Google Scholar 

  • Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15(3):R46.

    Article  Google Scholar 

  • Wosinska L, et al. The potential impact of probiotics on the gut microbiome of athletes. Nutrients. 2019;11(10):2270.

    Article  CAS  Google Scholar 

  • Zhang X, et al. Age-related compositional changes and correlations of gut microbiome, serum metabolome, and immune factor in rats. GeroScience. 2021;43(2):709–25.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Ning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ning, K., Li, Y. (2023). Microbiome Data Analysis and Interpretation: Correlation Inference and Dynamic Pattern Discovery. In: Ning, K. (eds) Methodologies of Multi-Omics Data Integration and Data Mining. Translational Bioinformatics, vol 19. Springer, Singapore. https://doi.org/10.1007/978-981-19-8210-1_7

Download citation

Publish with us

Policies and ethics