Skip to main content

Composite Electrolyte for All-Solid-State Lithium Battery

  • Chapter
  • First Online:
Functional Membranes for High Efficiency Molecule and Ion Transport

Abstract

All-solid-state lithium batteries (ASSLBs) have been considered as next-generation energy storage devices owing to the remarkable energy density and high safety as compared with conventional batteries (Lin et al. in Nat. Nanotechnol. 12:194–206, 2017; Manthiram et al. in Nat Rev Mater 2:16, 103, 2017). Solid-state electrolytes (SSEs) are the key component of ASSLBs, and their ionic conductivity and mechanical stability directly determine the battery performance (Xia et al. in Chem 5:753–785, 2019). Generally, the SSEs can be divided into inorganic ceramic electrolyte and polymer electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017)

    Article  CAS  Google Scholar 

  2. A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017)

    Article  CAS  Google Scholar 

  3. S. Xia, X. Wu, Z. Zhang, Y. Cui, W. Liu, Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chemistry 5, 753–785 (2019)

    Article  CAS  Google Scholar 

  4. D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Polymer electrolytes for lithium-based batteries: advances and prospects. Chemistry 5, 2326–2352 (2019)

    Article  CAS  Google Scholar 

  5. L. Xu, J. Li, W. Deng, H. Shuai, S. Li, Z. Xu, J. Li, H. Hou, H. Peng, G. Zou, X. Ji, Garnet solid electrolyte for advanced all-solid-state Li batteries. Adv. Energy Mater. 11, 2000648 (2020)

    Article  Google Scholar 

  6. J.W. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sour. 195, 4554–4569 (2010)

    Article  CAS  Google Scholar 

  7. F. Lv, Z. Wang, L. Shi, J. Zhu, K. Edström, J. Mindemark, S. Yuan, Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries. J. Power Sour. 441, 227175 (2019)

    Article  CAS  Google Scholar 

  8. E. Bakangura, L. Wu, L. Ge, Z. Yang, T. Xu, Progress in polymer science mixed matrix proton exchange membranes for fuel cells: state of the art and perspectives. Prog. Polym. Sci. 57, 103–152 (2016)

    Article  CAS  Google Scholar 

  9. Y. Li, G. He, S. Wang, S. Yu, F. Pan, H. Wu, Z. Jiang, Recent advances in the fabrication of advanced composite membranes. J. Mater. Chem. A 35, 10058–10077 (2013)

    Article  Google Scholar 

  10. L. Chen, W. Li, L.Z. Fan, C.W. Nan, Q. Zhang, Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries. Adv. Func. Mater. 29, 1901047 (2019)

    Article  Google Scholar 

  11. Z. Zhang, R.G. Antonio, K.L. Choy, Boron nitride enhanced polymer/salt hybrid electrolytes for all-solid-state lithium ion batteries. J. Power Sour. 435, 226736 (2019)

    Article  CAS  Google Scholar 

  12. Y.S. Ye, H. Wang, S.G. Bi, Y. Xue, Z.G. Xue, X.P. Zhou, X.L. Xie, Y.W. Mai, High performance composite polymer electrolytes using polymeric ionic liquid-functionalized graphene molecular brushes. J. Mater. Chem. A 3, 18064–18073 (2015)

    Article  CAS  Google Scholar 

  13. Q. Pan, Y. Zheng, S. Kota, W. Huang, S. Wang, H. Qi, S. Kim, Y. Tu, M.W. Barsoum, C.Y. Li, 2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries. Nanoscale Adv. 1, 395–402 (2019)

    Article  CAS  Google Scholar 

  14. W. Liu, S.W. Lee, D. Lin, F. Shi, S. Wang, A.D. Sendek, Y. Cui, Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2, 17035 (2017)

    Article  CAS  Google Scholar 

  15. W. Tang, S. Tang, C. Zhang, Q. Ma, Q. Xiang, Y.W. Yang, J. Luo, Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets. Adv. Energy Mater. 8, 1800866 (2018)

    Article  Google Scholar 

  16. Z. Jiang, H. Xie, S. Wang, X. Song, X. Yao, H. Wang, Perovskite membranes with vertically aligned microchannels for all-solid-state lithium batteries. Adv. Energy Mater. 8, 1801433 (2018)

    Article  Google Scholar 

  17. K. Fu, Y. Gong, G.T. Hitz, D.W. McOwen, Y. Li, S. Xu, Y. Wen, L. Zhang, C. Wang, G. Pastel, J. Dai, B. Liu, H. Xie, Y. Yao, E.D. Wachsman, L. Hu, Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries. Energy Environ. Sci. 10, 1568–1575 (2017)

    Article  CAS  Google Scholar 

  18. A. Li, X. Liao, H. Zhang, L. Shi, P. Wang, Q. Cheng, J. Borovilas, Z. Li, W. Huang, Z. Fu, M. Dontigny, K. Zaghib, K. Myers, X. Chuan, X. Chen, Y. Yang, Nacre-inspired composite electrolytes for load-bearing solid-state lithium-metal batteries. Adv. Mater. 32, 1905517 (2020)

    Article  CAS  Google Scholar 

  19. M.J. Palmer, S. Kalnaus, M.B. Dixit, A.S. Westover, K.B. Hatzell, N.J. Dudney, X.C. Chen, A three-dimensional interconnected polymer/ceramic composite as a thin film solid electrolyte. Energy Storage Mater. 26, 242–249 (2020)

    Article  Google Scholar 

  20. J. Ding, R. Xu, C. Yan, Y. Xiao, Y. Liang, H. Yuan, J. Huang, Integrated lithium metal anode protected by composite solid electrolyte film enables stable quasi-solid-state lithium metal batteries. Chin. Chem. Lett. 31, 2339–2342 (2020)

    Article  CAS  Google Scholar 

  21. W. Liu, N. Liu, J. Sun, P.C. Hsu, Y. Li, H.W. Lee, Y. Cui, Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 15, 2740–2745 (2015)

    Article  CAS  Google Scholar 

  22. C. Gerbaldi, J.R. Nair, M.A. Kulandainathan, R.S. Kumar, C. Ferrara, P. Mustarelli, A.M. Stephan, Innovative high performing metal organic framework (MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries. J. Mater. Chem. A 2, 9948–9954 (2014)

    Article  CAS  Google Scholar 

  23. K. Jeong, S. Park, G.Y. Jung, S.H. Kim, Y.H. Lee, S.K. Kwak, S.Y. Lee, Solvent-free, single lithium-ion conducting covalent organic frameworks. J. Am. Chem. Soc. 141, 5880–5885 (2019)

    Article  CAS  Google Scholar 

  24. J. Bae, Y. Li, F. Zhao, X. Zhou, Y. Ding, G. Yu, Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Mater. 15, 46–52 (2018)

    Article  Google Scholar 

  25. Y. Gong, K. Fu, S. Xu, J. Dai, T.R. Hamann, L. Zhang, G.T. Hitz, Z. Fu, Z. Ma, D.W. McOwen, X. Han, L. Hu, E.D. Wachsman, Lithium-ion conductive ceramic textile: a new architecture for flexible solid-state lithium metal batteries. Mater. Today 21, 594–601 (2018)

    Article  CAS  Google Scholar 

  26. S. Zekoll, C. Marriner-Edwards, A.K.O. Hekselman, J. Kasemchainan, C. Kuss, D.E.J. Armstrong, D. Cai, R.J. Wallace, F.H. Richter, J.H.J. Thijssen, P.G. Bruce, Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ. Sci. 11, 185–201 (2018)

    Article  CAS  Google Scholar 

  27. Z. Yang, Z. Sun, C. Liu, Y. Li, G. Zhou, S. Zuo, J. Wang, W. Wu, Lithiated nanosheets hybridized solid polymer electrolyte to construct Li+ conduction highways for advanced all-solid-state lithium battery. J. Power Sour. 484, 229287 (2021)

    Article  CAS  Google Scholar 

  28. W. Kou, R. Lv, S. Zuo, Z. Yang, J. Huang, W. Wu, J. Wang, Hybridizing polymer electrolyte with poly(ethylene glycol) grafted polymer-like quantum dots for all-solid-state lithium batteries. J. Membr. Sci. 618, 118702 (2021)

    Article  CAS  Google Scholar 

  29. N. Peng, W. Kou, W. Wu, S. Guo, Y. Wang, J. Wang. Laminar composite solid electrolyte with poly(ethylene oxide)-threaded metal-organic framework nanosheets for high-performance all-solid-state lithium battery. Energy Environ. Mater. 0, 1–10 (2021)

    Google Scholar 

  30. C. Liu, J. Wang, W. Kou, Z. Yang, P. Zhai, Y. Liu, W. Wu, J. Wang, A flexible, ion-conducting solid electrolyte with vertically bicontinuous transfer channels toward high performance all-solid-state lithium batteries. Chem. Eng. J. 404, 126517 (2021)

    Article  CAS  Google Scholar 

  31. S. Guo, W. Kou, W. Wu, R. Lv, Z. Yang, J. Wang, Thin laminar inorganic solid electrolyte with high ionic conductance towards high-performance all-solid-state lithium battery. Chem. Eng. J. 427, 131948 (2022)

    Article  CAS  Google Scholar 

  32. R. Lv, W. Kou, S. Guo, W. Wu, Y. Zhang, Y. Wang. J. Wang. Preparing two-dimensional ordered Li0.33La0.557TiO3 crystal in interlayer channel of thin laminar inorganic solid-state electrolyte towards ultrafast Li+ transfer. Angewandte Chemie International Edition, 61, e202114220 (2022)

    Google Scholar 

  33. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    Article  CAS  Google Scholar 

  34. Y. He, J. Wang, H. Zhang, T. Zhang, B. Zhang, S. Cao, J. Liu, Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions. J. Mater. Chem. A 2, 9548–9558 (2014)

    Article  CAS  Google Scholar 

  35. Y. Liu, K. Ai, L. Lu, Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 114, 5057–5115 (2014)

    Article  CAS  Google Scholar 

  36. J.H. Ryu, P.B. Messersmith, H. Lee, Polydopamine surface chemistry: a decade of discovery. ACS Appl. Mater. Interfaces 10, 7523–7540 (2018)

    Article  CAS  Google Scholar 

  37. S.M. Kang, S. Park, D. Kim, S.Y. Park, R.S. Ruoff, H. Lee, Simultaneous reduction and surface functionalization of graphene oxide by mussel-inspired chemistry. Adv. Func. Mater. 21, 108–112 (2011)

    Article  CAS  Google Scholar 

  38. Y.T. Weng, H.W. Liu, A. Pei, F.F. Shi, H. Wang, C.Y. Lin, S.S. Huang, L.Y. Su, J.P. Hsu, C.C. Fang, Y. Cui, N.L. Wu, An ultrathin ionomer interphase for high efficiency lithium anode in carbonate based electrolyte. Nat. Commun. 10, 5824 (2019)

    Article  CAS  Google Scholar 

  39. J. Shim, H.J. Kim, B.G. Kim, Y.S. Kim, D.G. Kim, J.C. Lee, 2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries. Energy Environ. Sci. 10, 1911–1916 (2017)

    Article  CAS  Google Scholar 

  40. J. Wan, J. Xie, D.G. Mackanic, W. Burke, Z. Bao, Y. Cui, Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries. Mater. Today Nano 4, 1–16 (2018)

    Article  CAS  Google Scholar 

  41. B. Chen, Z. Huang, X. Chen, Y. Zhao, Q. Xu, P. Long, S. Chen, X. Xu, A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery. Electrochim. Acta 210, 905–914 (2016)

    Article  CAS  Google Scholar 

  42. H. Chen, D. Adekoya, L. Hencz, J. Ma, S. Chen, C. Yan, H. Zhao, G. Cui, S. Zhang, Stable seamless interfaces and rapid ionic conductivity of Ca-CeO2/LiTFSI/PEO composite electrolyte for high-rate and high-voltage all-solid-state battery. Adv. Energy Mater. 10, 2000049 (2020)

    Article  CAS  Google Scholar 

  43. X. Wang, Y. Zhang, X. Zhang, T. Liu, Y.H. Lin, L. Li, Y. Shen, C.W. Nan, Lithium-salt-rich PEO/Li0.3La0.557TiO3 interpenetrating composite electrolyte with three-dimensional ceramic nano-backbone for all-solid-state lithium-ion batteries. ACS Appl. Mater. Interfaces 10, 24791–24798 (2018)

    Google Scholar 

  44. Y. Lin, X. Wang, J. Liu, J.D. Miller, Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries. Nano Energy 31, 478–485 (2017)

    Article  CAS  Google Scholar 

  45. J. Wu, Z. Rao, Z. Cheng, L. Yuan, Z. Li, Y. Huang, Ultrathin, flexible polymer electrolyte for cost-effective fabrication of all-solid-state lithium metal batteries. Adv. Energy Mater. 9, 1902767 (2019)

    Article  CAS  Google Scholar 

  46. D. Lin, P.Y. Yuen, Y. Liu, W. Liu, N. Liu, R.H. Dauskardt, Y. Cui, A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv. Mater. 30, 1802661 (2018)

    Article  Google Scholar 

  47. L. Edman, Ion association and ion solvation effects at the crystalline-amorphous phase transition in PEO-LiTFSI. J. Phys. Chem. B 104, 7254–7258 (2000)

    Article  CAS  Google Scholar 

  48. I. Rey, P. Johansson, J. Lindgren, J.C. Lassègues, J. Grondin, L. Servant, Spectroscopic and theoretical study of (CF3SO2)2N- (TFSI-) and (CF3SO2)2NH (HTFSI). J. Phys. Chem. A 102, 3249–3258 (1998)

    Article  CAS  Google Scholar 

  49. C. Ma, K. Dai, H. Hou, X. Ji, L. Chen, D.G. Ivey, W. Wei, High ion-conducting solid-state composite electrolytes with carbon quantum dot nanofillers. Adv. Sci. 5, 1700996 (2018)

    Article  Google Scholar 

  50. J. Ma, B. Chen, L. Wang, G. Cui, Progress and prospect on failure mechanisms of solid-state lithium batteries. J. Power Sour. 392, 94–115 (2018)

    Article  CAS  Google Scholar 

  51. B.J. Xiao, How lithium dendrites form in liquid batteries. Sci. 366, 426–428 (2019)

    Article  CAS  Google Scholar 

  52. Q. Zhang, K. Liu, F. Ding, X. Liu, Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 10, 4139–4174 (2017)

    Article  Google Scholar 

  53. W. Wu, Y. Li, J. Liu, J. Wang, Y. He, K. Davey, S.Z. Qiao, Molecular-level hybridization of Nafion with quantum dots for highly enhanced proton conduction. Adv. Mater. 30, 1707516 (2018)

    Article  Google Scholar 

  54. Q. Lu, Y.B. He, Q. Yu, B. Li, Y.V. Kaneti, Y. Yao, F. Kang, Q.H. Yang, Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv. Mater. 29, 1604460 (2017)

    Article  Google Scholar 

  55. Y. Zhu, J. Cao, H. Chen, Q. Yu, B. Li, High electrochemical stability of a 3D cross-linked network PEO@nano-SiO2 composite polymer electrolyte for lithium metal batteries. J. Mater. Chem. A 7, 6832–6839 (2019)

    Article  CAS  Google Scholar 

  56. Z. Xiao, B. Zhou, J. Wang, C. Zuo, D. He, X. Xie, Z. Xue, PEO-based electrolytes blended with star polymers with precisely imprinted polymeric pseudo-crown ether cavities for alkali metal ion batteries. J. Membr. Sci. 576, 182–189 (2019)

    Article  CAS  Google Scholar 

  57. J. Hu, W. Wang, B. Zhou, Y. Feng, X. Xie, Z. Xue, Poly (ethylene oxide)-based composite polymer electrolytes embedding with ionic bond modified nanoparticles for all-solid-state lithium-ion battery. J. Membr. Sci. 575, 200–208 (2019)

    Article  CAS  Google Scholar 

  58. X. Zhou, H. Jiang, H. Zheng, Y. Sun, X. Liang, H. Xiang, Nonflammable hybrid solid electrolyte membrane for a solid-state lithium battery compatible with conventional porous electrodes. J. Membr. Sci. 603, 117820 (2020)

    Article  CAS  Google Scholar 

  59. L. Liu, J. Lyu, J. Mo, H. Yan, L. Xu, P. Peng, J. Li, B. Jiang, L. Chu, M. Li, Comprehensively-upgraded polymer electrolytes by multifunctional aramid nanofibers for stable all-solid-state Li-ion batteries. Nano Energy 69, 104398 (2020)

    Article  CAS  Google Scholar 

  60. Z. Zou, Y. Li, Z. Lu, D. Wang, Y. Cui, B. Guo, Y. Li, X. Liang, J. Feng, H. Li, C.W. Nan, M. Armand, L. Chen, K. Xu, S. Shi, Mobile ions in composite solids. Chem. Rev. 120, 4169–4221 (2020)

    Article  CAS  Google Scholar 

  61. N.S. Murthy, H. Minor, General procedure for evaluating amorphous scattering and crystallinity from X-ray diffraction scans of semicrystalline polymers. Polymer 31, 996–1002 (1989)

    Article  Google Scholar 

  62. T.H. Lee, F.Y.C. Boey, K.A. Khor, X-ray diffraction analysis technique for determining the polymer crystallinity in a polyphenylene sulfide composite. Polym. Compos. 16, 481–488 (1995)

    Article  CAS  Google Scholar 

  63. N. Lago, O. Garcia-Calvo, J.M. Lopezdelamo, T. Rojo, M. Armand, All-solid-state lithium-ion batteries with grafted ceramic nanoparticles dispersed in solid polymer electrolytes. Chemsuschem 8, 3039–3043 (2015)

    Article  CAS  Google Scholar 

  64. S. Li, K. Jiang, J. Wang, C. Zuo, Y.H. Jo, D. He, X. Xie, Z. Xue, Molecular brush with dense PEG side chains: design of a well-defined polymer electrolyte for lithium-ion batteries. Macromolecules 52, 7234–7243 (2019)

    Article  CAS  Google Scholar 

  65. Q. Zhou, J. Ma, S. Dong, X. Li, G. Cui, Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 31, 1902029 (2019)

    Article  CAS  Google Scholar 

  66. Z. Wang, X. Huang, L. Chen, Understanding of effects of nano-Al2O3 particles on ionic conductivity of composite polymer electrolytes. Electrochem. Solid-State Lett. 6, E40–E44 (2003)

    Article  CAS  Google Scholar 

  67. T. Li, P. Shi, R. Zhang, H. Liu, X.B. Cheng, Q. Zhang, Dendrite-free sandwiched ultrathin lithium metal anode with even lithium plating and stripping behavior. Nano Res. 12, 2224–2229 (2019)

    Article  CAS  Google Scholar 

  68. J. Wang, M. Li, C. Liu, Y. Liu, T. Zhao, P. Zhai, J. Wang, An electronegative modified separator with semifused pores as a selective barrier for highly stable lithium-sulfur batteries. Ind. Eng. Chem. Res. 58, 14538–14547 (2019)

    Article  CAS  Google Scholar 

  69. J. Zhang, C. Ma, Q. Xia, J. Liu, Z. Ding, M. Xu, L. Chen, W. Wei, Composite electrolyte membranes incorporating viscous copolymers with cellulose for high performance lithium-ion batteries. J. Membr. Sci. 497, 259–269 (2016)

    Article  CAS  Google Scholar 

  70. Z. Xie, Z. Wu, X. An, X. Yue, P. Xiaokaiti, A. Yoshida, A. Abudula, G. Guan, A sandwich-type composite polymer electrolyte for all-solid-state lithium metal batteries with high areal capacity and cycling stability. J. Membr. Sci. 596, 117739 (2020)

    Article  CAS  Google Scholar 

  71. S. Zhao, Y. Wang, J. Dong, C.T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A.M. Khattak, N.A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao, Z. Tang, Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 1, 16184 (2016)

    Article  CAS  Google Scholar 

  72. Y. Wang, Y. Liu, H. Wang, W. Liu, Y. Li, J. Zhang, H. Hou, J. Yang, Ultrathin NiCo-MOF Nanosheets for High-Performance Supercapacitor Electrodes. ACS Appl. Energy Mater. 2, 2063–2071 (2019)

    Article  CAS  Google Scholar 

  73. Z. Guo, Y. Zhang, Y. Dong, J. Li, S. Li, P. Shao, X. Feng, B. Wang, Fast ion transport pathway provided by polyethylene glycol confined in covalent organic frameworks. J. Am. Chem. Soc. 141, 1923–1927 (2019)

    Article  CAS  Google Scholar 

  74. H. Deng, C.J. Doonan, H. Furukawa, R.B. Ferreira, J. Towne, C.B. Knobler, B. Wang, O.M. Yaghi, Multiple functional groups of varying ratios in metal-organic frameworks. Science 327, 846–850 (2010)

    Article  CAS  Google Scholar 

  75. M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O.M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002)

    Article  CAS  Google Scholar 

  76. S. Yuan, L. Huang, Z. Huang, D. Sun, J.S. Qin, L. Feng, J. Li, X. Zou, T. Cagin, H.C. Zhou, Continuous variation of lattice dimensions and pore sizes in metal−organic frameworks. J. Am. Chem. Soc. 142, 4732–4738 (2020)

    Article  CAS  Google Scholar 

  77. H. Qin, K. Fu, Y. Zhang, Y. Ye, M. Song, Y. Kuang, S.H. Jang, F. Jiang, L. Cui, Flexible nanocellulose enhanced Li+ conducting membrane for solid polymer electrolyte. Energy Storage Mater. 28, 293–299 (2020)

    Article  Google Scholar 

  78. X. Zhang, J. Xie, F. Shi, D. Lin, Y. Liu, W. Liu, A. Pei, Y. Gong, H. Wang, K. Liu, Y. Xiang, Y. Cui, Vertically aligned and continuous nanoscale ceramic−polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity. Nano Lett. 18, 3829–3838 (2018)

    Article  CAS  Google Scholar 

  79. S. Ramesh, T.F. Yuen, C.J. Shen, Conductivity and FTIR studies on PEO–LiX [X: CF3SO3, SO42−] polymer electrolytes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 69, 670–675 (2008)

    Article  CAS  Google Scholar 

  80. L.H. Sim, S.N. Gan, C.H. Chan, R. Yahya, ATR-FTIR studies on ion interaction of lithium perchlorate in polyacrylate/poly (ethylene oxide) blends. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 76, 287–292 (2010)

    Article  CAS  Google Scholar 

  81. M. Marcinek, M. Ciosek, G. Zukowska, W. Wieczorek, K.R. Jeffrey, J.R. Stevens, The impact of end groups on ionic interactions in low molecular weight Al2O3–polyether–LiClO4 electrolytes. Solid State Ionics 171, 69–80 (2004)

    Article  CAS  Google Scholar 

  82. Y. Suzuki, H. Duran, M. Steinhart, H.J. Butt, G. Floudas, Homogeneous crystallization and local dynamics of poly (ethylene oxide) (PEO) confined to nanoporous alumina. Soft Matter 9, 2621–2628 (2013)

    Article  CAS  Google Scholar 

  83. H. Huo, B. Wu, T. Zhang, X. Zheng, L. Ge, T. Xu, X. Guo, X. Sun, Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Storage Mater. 18, 59–67 (2019)

    Article  Google Scholar 

  84. Z. Yang, H. Yuan, C. Zhou, Y. Wu, W. Tang, S. Sang, H. Liu, Facile interfacial adhesion enabled LATP-based solid-state lithium metal battery. Chem. Eng. J. 392, 123650 (2020)

    Article  CAS  Google Scholar 

  85. R. Li, S. Guo, L. Yu, L. Wang, D. Wu, Y. Li, X. Hu, Morphosynthesis of 3D macroporous garnet frameworks and perfusion of polymer-stabilized lithium salts for flexible solid-state hybrid electrolytes. Adv. Mater. Interfaces 6, 1900200 (2019)

    Article  Google Scholar 

  86. Z. Wan, D. Lei, W. Yang, C. Liu, K. Shi, X. Hao, L. Shen, W. Lv, B. Li, Q.H. Yang, F. Kang, Y.B. He, Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Adv. Func. Mater. 29, 1805301 (2019)

    Article  Google Scholar 

  87. J. Bae, Y. Li, J. Zhang, X. Zhou, F. Zhao, Y. Shi, J.B. Goodenough, G. Yu, A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed. 57, 2096–2100 (2018)

    Article  CAS  Google Scholar 

  88. C.Z. Zhao, X.Q. Zhang, X.B. Cheng, R. Zhang, R. Xu, P.Y. Chen, H.J. Peng, J.Q. Huang, Q. Zhang, An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. 114, 11069–11074 (2017)

    Article  CAS  Google Scholar 

  89. J. Zheng, M. Tang, Y.Y. Hu, Lithium ion pathway within Li7La3Zr2O12 polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 128, 12726–12730 (2016)

    Article  Google Scholar 

  90. N. Wu, P.H. Chien, Y. Qian, Y. Li, H. Xu, N.S. Grundish, B. Xu, H. Jin, Y.Y. Hu, G. Yu, J.B. Goodenough, Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte. Angew. Chem. Int. Ed. 59, 4131–4137 (2020)

    Article  CAS  Google Scholar 

  91. K. He, J. Zha, P. Du, S. H. Cheng, C. Liu, Z. Dang, R.K.Y. Li. Tailored high cycling performance in a solid polymer electrolyte with perovskite-type Li0.33La0.557TiO3 nanofibers for all-solid-state lithium ion batteries. Dalton Trans. 48, 3263–3269 (2019)

    Google Scholar 

  92. P. Zhu, C. Yan, M. Dirican, J. Zhu, J. Zang, R.K. Selvan, C.C. Chung, H. Jia, Y. Li, Y. Kiyak, N. Wu, X. Zhang, Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. J. Mater. Chem. A, 6, 4279–4285 (2018)

    Google Scholar 

  93. Y. Zhao, S. Hao, L. Su, Z. Ma, G. Shao, Hierarchical Cu fibers induced Li uniform nucleation for dendrite-free lithium metal anode. Chem. Eng. J. 392, 123691 (2020)

    Article  CAS  Google Scholar 

  94. J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu, F. Shi, A. Pei, H. Chen, W. Chen, J. Chen, X. Zhang, L. Zong, J. Wang, L. Chen, J. Qin, Y. Cui, Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019)

    Article  CAS  Google Scholar 

  95. T. Jiang, P. He, G. Wang, Y. Shen, C.W. Nan, L.Z. Fan, Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv. Energy Mater. 10, 1903376 (2020)

    Article  CAS  Google Scholar 

  96. A.A. AbdelHamid, J.L. Cheong, J.Y. Ying, Li7La3Zr2O12 sheet-based framework for high-performance lithium-sulfur hybrid quasi-solid battery. Nano Energy 71, 104633 (2020)

    Article  CAS  Google Scholar 

  97. W. Li, C. Sun, J. Jin, Y. Li, C. Chen, Z. Wen, Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries. J. Mater. Chem. A 7, 27304–27312 (2019)

    Article  CAS  Google Scholar 

  98. K.J. Kim, M. Balaish, M. Wadaguchi, L. Kong, J.L.M. Rupp, Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv. Energy Mater. 11, 2002689 (2021)

    Article  CAS  Google Scholar 

  99. Z. Jiang, S. Wang, X. Chen, W. Yang, X. Yao, X. Hu, Q. Han, H. Wang, Tape-casting Li0.34La0.56TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries. Adv. Mater. 32, 1906221 (2020)

    Google Scholar 

  100. S. Jung, H. Gwon, G. Yoon, L.J. Miara, V. Lacivita, J. Kim, Pliable lithium superionic conductor for all-solid-state batteries. ACS Energy Lett. 6, 2006–2015 (2021)

    Article  CAS  Google Scholar 

  101. X. Yang, K.R. Adair, X. Gao, X. Sun, Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries. Energy Environ. Sci. 14, 643–671 (2021)

    Article  CAS  Google Scholar 

  102. J. Wu, L. Yuan, W. Zhang, Z. Li, X. Xie, Y. Huang, Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ. Sci. 14, 12–36 (2021)

    Article  CAS  Google Scholar 

  103. N. Zhao, W. Khokhar, Z. Bi, C. Shi, X. Guo, L.Z. Fan, C.W. Nan, Solid garnet batteries. Joule 3, 1190–1199 (2019)

    Article  CAS  Google Scholar 

  104. X. Chen, W. He, L.X. Ding, S. Wang, H. Wang, Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ. Sci. 12, 938–944 (2019)

    Article  CAS  Google Scholar 

  105. H. Huo, X. Li, Y. Sun, X. Lin, K.D. Davis, J. Liang, X. Gao, R. Li, H. Huang, X. Guo, X. Sun, Li2CO3 effects: new insights into polymer/garnet electrolytes for dendrite-free solid lithium batteries. Nano Energy 73, 104836 (2020)

    Article  CAS  Google Scholar 

  106. J.J. Shao, K. Raidongia, A.R. Koltonow, J. Huang, Self-assembled two-dimensional nanofluidic proton channels with high thermal stability. Nat. Commun. 6, 7602 (2015)

    Article  Google Scholar 

  107. C.H. Chen, J. Du, Lithium ion diffusion mechanism in lithium lanthanum titanate solid-state electrolytes from atomistic simulations. J. Am. Ceram. Soc. 98, 534–542 (2014)

    Article  Google Scholar 

  108. X. Wang, H. Wang, Y. Zhou, Y. Liu, B. Li, X. Zhou, H. Shen, Confined-space synthesis of single crystal TiO2 nanowires in atmospheric vessel at low temperature: a generalized approach. Sci. Rep. 5, 8129 (2015)

    Article  Google Scholar 

  109. X. Gao, C.A.J. Fisher, T. Kimura, Y.H. Ikuhara, H. Moriwake, A. Kuwabara, H. Oki, T. Tojigamori, R. Huang, Y. Ikuhara, Lithium atom and A-site vacancy distributions in lanthanum lithium titanate. Chem. Mater. 25, 1607–1614 (2013)

    Article  CAS  Google Scholar 

  110. A.A. AbdelHamid, Y. Yu, J. Yang, J.Y. Ying, Generalized synthesis of metal oxide nanosheets and their application as Li-ion battery anodes. Adv. Mater. 29, 1701427 (2017)

    Article  Google Scholar 

  111. M. Romero, R. Faccio, S. Vázquez, S. Davyt, Á. W. Mombrú, Experimental and theoretical Raman study on the structure and microstructure of Li0. 30La0. 57TiO3 electrolyte prepared by the sol-gel method in acetic medium. Ceram. Int. 42, 15414–15422 (2016)

    Google Scholar 

  112. M.J. Wang, J.B. Wolfenstine, J. Sakamoto, Mixed electronic and ionic conduction properties of lithium lanthanum titanate. Adv. Func. Mater. 30, 1909140 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingtao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J., Zhang, Y., Wang, J. (2023). Composite Electrolyte for All-Solid-State Lithium Battery. In: Wang, J., Wu, W. (eds) Functional Membranes for High Efficiency Molecule and Ion Transport. Springer, Singapore. https://doi.org/10.1007/978-981-19-8155-5_7

Download citation

Publish with us

Policies and ethics