Skip to main content

Coherence of Quantum States Based on Mutually Unbiased Bases in \(\mathbb {C}^4\)

  • Conference paper
  • First Online:
Theoretical Computer Science (NCTCS 2022)

Abstract

Recently, many measures have been put forward to quantify the coherence of quantum states relative to a given basis. We extend the relationship between mutually unbiased basis (MUBs) and quantum coherence to a higher dimension. Results include arbitrary complete sets of MUBs from \(\mathbb {C}^2\) to \(\mathbb {C}^4\), and the form of arbitrary \(2 \times 2\) Unitary matrix and any density matrix of qubit states in respect of complete sets of MUBs. We construct a set of three MUBs by tensor product and further think of complete sets of five MUBs in \(\mathbb {C}^4\). Taking the Bell diagonal state as an example, we analyze the coherence of quantum states under MUBs and calculate the corresponding upper and lower bounds. The results show that in addition to selecting the unbiased basis which is often used, we can consider more sets of MUBs, which may be helpful to the analysis of quantum states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bandyopadhyay, S.: A new proof for the existence of mutually unbiased bases. Algorithmica 34(4), 512–528 (2002). https://doi.org/10.1007/s00453-002-0980-7

    Article  MathSciNet  MATH  Google Scholar 

  2. Ivonovic, I.D.: Geometrical description of quantal state determination. J. Phys. A: Gen. Phys. 14(12), 3241–3245 (1981)

    Article  MathSciNet  Google Scholar 

  3. Wootters, W.K.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191(2), 363–381 (1989)

    Article  MathSciNet  Google Scholar 

  4. Spengler, C.: Entanglement detection via mutually unbiased bases. Phys. Rev. A 86(2), 022311 (2012)

    Article  Google Scholar 

  5. Melko, R.G.: Restricted Boltzmann machines in quantum physics. Nat. Phys. 15(9), 887–892 (2019)

    Article  Google Scholar 

  6. Ryan-Anderson, C.: Realization of real-time fault-tolerant quantum error correction. Phys. Rev. X 11(4), 041058 (2021)

    Google Scholar 

  7. Durt, T.: On mutually unbiased bases. Int. J. Quantum. Inform. 8(4), 535–640 (2010)

    Article  MATH  Google Scholar 

  8. Horodecki, P.: Five open problems in quantum information theory. PRX Quantum 3(1), 010101 (2022)

    Article  Google Scholar 

  9. Luo, S.: Partial coherence with application to the monotonicity problem of coherence involving skew information. Phys. Rev. A 96(2), 022136 (2017)

    Article  Google Scholar 

  10. Baumgratz, T.: Quantifying coherence. Phys. Rev. Lett. 113(14), 140401 (2014)

    Article  Google Scholar 

  11. Napoli, C.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116(15), 150502 (2016)

    Article  Google Scholar 

  12. Chen, B.: Notes on modified trace distance measure of coherence. Quantum Inf. Process. 17(5), 1–9 (2018). https://doi.org/10.1007/s11128-018-1879-9

    Article  MathSciNet  Google Scholar 

  13. Pires, D.: Geometric lower bound for a quantum coherence measure. Phys. Rev. A 91(4), 042330 (2015)

    Article  Google Scholar 

  14. Hu, M.-L.: Quantum coherence and geometric quantum discord. Phys. Rep. 762, 1–100 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Mu, H.: Quantum uncertainty relations of two quantum relative entropies of coherence. Phys. Rev. A 102(2), 022217 (2020)

    Article  MathSciNet  Google Scholar 

  16. Luo, Y.: Inequivalent multipartite coherence classes and two operational coherence monotones. Phys. Rev. A 99(4), 042306 (2019)

    Article  Google Scholar 

  17. Lian, Y.: Protocol of deterministic coherence distillation and dilution of pure states. Laser Phys. Lett. 17(8), 085201 (2020)

    Article  Google Scholar 

  18. Ren, R.: Tighter sum uncertainty relations based on metric-adjusted skew information. Phys. Rev. A 104(5), 052414 (2021)

    Article  MathSciNet  Google Scholar 

  19. Ye, M.: Operational characterization of weight-based resource quantifiers via exclusion tasks in general probabilistic theories. Quantum Inf. Process. 20(9), 1–28 (2021). https://doi.org/10.1007/s11128-021-03251-5

    Article  MathSciNet  Google Scholar 

  20. Vinjanampathy, S.: Quantum thermodynamics. Contemp. Phys. 57(4), 545–579 (2016)

    Article  Google Scholar 

  21. Kosloff, R.: Quantum thermodynamics: a dynamical viewpoint. Entropy 15(6), 2100–2128 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lambert, N.: Quantum biology. Nat. Phys. 9(1), 10–18 (2013)

    Article  Google Scholar 

  23. Cao, J.: Quantum biology revisited. Sci. Adv. 6(14), eaaz4888 (2020)

    Google Scholar 

  24. McFadden, J.: The origins of quantum biology. Proc. R. Soc. Lond. Ser. A 474(2220), 20180674 (2018)

    Google Scholar 

  25. Solenov, D.: The potential of quantum computing and machine learning to advance clinical research and change the practice of medicine. Mo. Med. 115(5), 463–467 (2018)

    Google Scholar 

  26. Hassanzadeh, P.: Towards the quantum-enabled technologies for development of drugs or delivery systems. J. Controlled Release 324, 260–279 (2020)

    Article  Google Scholar 

  27. Streltsov, A.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115(2), 020403 (2015)

    Article  MathSciNet  Google Scholar 

  28. Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement, 2nd edn. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  29. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. Cambridge University Press, New York (2011)

    MATH  Google Scholar 

  30. Winter, A.: Operational resource theory of coherence. Phys. Rev. Lett. 116(12), 120404 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This paper was supported by National Science Foundation of China (Grant Nos: 12071271, 11671244, 62001274), the Higher School Doctoral Subject Foundation of Ministry of Education of China (Grant No: 20130202110001) and the Research Funds for the Central Universities (GK202003070). Special thanks to Professor Yuanhong Tao for her enlightening academic report. Useful suggestions given by Dr. Ruonan Ren, Dr. Ping Li, Dr. Mingfei Ye and Yongxu Liu are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongming Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, X., Li, Y. (2022). Coherence of Quantum States Based on Mutually Unbiased Bases in \(\mathbb {C}^4\). In: Cai, Z., Chen, Y., Zhang, J. (eds) Theoretical Computer Science. NCTCS 2022. Communications in Computer and Information Science, vol 1693. Springer, Singapore. https://doi.org/10.1007/978-981-19-8152-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8152-4_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8151-7

  • Online ISBN: 978-981-19-8152-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics