Skip to main content

Role of Radiological Investigations in Diagnosis of Shoulder Disorders and Surgical Planning of Arthroscopic and Endoscopic Shoulder Surgery

  • Chapter
  • First Online:
Arthroscopy and Endoscopy of the Shoulder

Abstract

Shoulder pain is a major orthopedic indication for imaging, with glenohumeral instability, impingement syndromes, rotator cuff pathologies, and acromioclavicular joint pathologies being among the major underlying causes. As an important adjunct to clinical assessment, radiology plays an increasingly important diagnostic role, both in localizing and determining the etiology of pain and in providing additional information which guides treatment decision-making. While radiography still holds an important place as an initial assessment modality, the last two decades have seen a rapid expansion in the utility of multislice CT, ultrasound, and MRI as advanced imaging tools. Multislice CT enables osseous structures to be assessed in multiple planes for injury delineation and surgical planning, while MRI and ultrasound can provide intricate details regarding soft-tissue structures. Arthrography, previously a purely fluoroscopic technique, has been transposed onto CT and MRI to further enhance depiction of intra-articular structures. A thorough understanding of the relative strengths and limitations of each imaging modality is important for deciding the best combination of radiological investigations in each clinical scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bell G, Finlay D. Radiography of the shoulder. In: Bell G, Finlay D, editors. Basic radiographic positioning and anatomy. London: Balliiere Tindall; 1986. p. 58–75.

    Google Scholar 

  2. Magee T, Shapiro M, Williams D. Comparison of high-field-strength versus low-field-strength MRI of the shoulder. AJR Am J Roentgenol. 2003;181(5):1211–5.

    Article  Google Scholar 

  3. Jung JY, Yoon YC, Yi SK, Yoo J, Choe BK. Comparison study of indirect MR arthrography and direct MR arthrography of the shoulder. Skelet Radiol. 2009;38(7):659–67. https://doi.org/10.1007/s00256-009-0660-7. Epub 2009 Feb 19

    Article  Google Scholar 

  4. Morrison WB. Indirect MR arthrography: concepts and controversies. Semin Musculoskelet Radiol. 2005;9(2):125–34. https://doi.org/10.1055/s-2005-872338.

    Article  Google Scholar 

  5. American College of Radiology (ACR) Manual on MR Safety. ACR Committee on MR Safety. Version 1.0. 2020.

    Google Scholar 

  6. Wong AJN, Wong M, Kutschera P, Lau KK. Dual-energy CT in musculoskeletal trauma. Clin Radiol. 2021;76(1):38–49. https://doi.org/10.1016/j.crad.2020.08.006.

    Article  CAS  Google Scholar 

  7. Cheraya G, Sharma S, Chhabra A. Dual energy CT in musculoskeletal applications beyond crystal imaging: bone marrow maps and metal artifact reduction. Skelet Radiol. 2022; https://doi.org/10.1007/s00256-021-03979-2.

  8. Jarraya M, Roemer FW, Gale HI, Landreau P, D’Hooghe P, Guermazi A. MR-arthrography and CT-arthrography in sports-related glenolabral injuries: a matched descriptive illustration. Insights Imaging. 2016;7(2):167–77. https://doi.org/10.1007/s13244-015-0462-5.

    Article  Google Scholar 

  9. Acid S, Le Corroller T, Aswad R, Pauly V, Champsaur P. Preoperative imaging of anterior shoulder instability: diagnostic effectiveness of MDCT arthrography and comparison with MR arthrography and arthroscopy. AJR Am J Roentgenol. 2012;198:661–7. https://doi.org/10.2214/AJR.11.7251.

    Article  Google Scholar 

  10. Yi JW, Park HJ, Lee SY, Rho MH, Hong HP, Choi YJ, Kim MS. Radiation dose reduction in multidetector CT in fracture evaluation. Br J Radiol. 2017;90(1077):20170240. https://doi.org/10.1259/bjr.20170240.

    Article  Google Scholar 

  11. Mettler FA Jr, Mahesh M, Bhargavan M, Chambers CE, Elee JG, Frush DP, Miller DL, Royal HD, Milano MT, Spelic DC, Ansari AJ, Bolch WE, Guerbert GM, Sherrier RH, Smith JM, Vetter RJ. Patient exposure from radiologic and nuclear medicine procedures in the United States: procedure volume and effective dose for the period 2006–2016. Radiology. 2020;295(2):418–27. https://doi.org/10.1148/radiol.2020192256.

    Article  Google Scholar 

  12. Saifuddin A. Chapter 1. The shoulder girdle. In: Saifuddin A, Tyler P, Hargunani R, editors. Musculoskeletal MRI. New York: Oxford University Press Inc.; 2008.

    Chapter  Google Scholar 

  13. Ladd LM, Crews M, Maertz NA. Glenohumeral joint instability: a review of anatomy, clinical presentation, and imaging. Clin Sports Med. 2021;40(4):585–99. https://doi.org/10.1016/j.csm.2021.05.001.

    Article  Google Scholar 

  14. Weber AE, Bolia IK, Horn A, Villacis D, Omid R, Tibone JE, White E, Hatch GF. Glenoid bone loss in shoulder instability: superiority of three-dimensional computed tomography over two-dimensional magnetic resonance imaging using established methodology. Clin Orthop Surg. 2021;13(2):223–8. https://doi.org/10.4055/cios20097.

    Article  Google Scholar 

  15. Mascarenhas R, Rusen J, Saltzman BM, Leiter J, Chahal J, Romeo AA, MacDonald P. Management of humeral and glenoid bone loss in recurrent glenohumeral instability [Review]. Adv Orthop. 2014; https://doi.org/10.1155/2014/640952.

  16. Di Giacomo G, Itoi E, Burkhart SS. Evolving concept of bipolar bone loss and the Hill-Sachs lesion: from “engaging/non-engaging” lesion to “on-track/off-track” lesion. J Arthrosc Relat Surg. 2014;30:90–8.

    Article  Google Scholar 

  17. Liu F, Cheng X, Dong J, Zhou D, Sun Q, Bai X, Wang D. Imaging modality for measuring the presence and extent of the labral lesions of the shoulder: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2019;20(1):487.

    Article  Google Scholar 

  18. Khedr SA, Kassem HM, Azab MA. Comparative study of direct MR arthrography and CT arthrography with arthroscopic correlation in preoperative evaluation of anterior shoulder instability. Egypt J Radiol Nucl Med. 2013;44:817–27. https://doi.org/10.1016/j.ejrnm.2013.06.010.

    Article  Google Scholar 

  19. Snyder SJ, Karzel RP, Del Pizzo W, Ferkel RD, Friedman MJ. SLAP lesions of the shoulder. Arthroscopy. 1990;6(4):274–9. https://doi.org/10.1016/0749-8063(90)90056-j.

    Article  CAS  Google Scholar 

  20. Morgan CD, Burkhart SS, Palmeri M, Gillespie M. Type II SLAP lesions: three subtypes and their relationships to superior instability and rotator cuff tears. Arthroscopy. 1998;14:553–65. https://doi.org/10.1016/S0749-8063(98)70049-0.

    Article  CAS  Google Scholar 

  21. Maffet MW, Gartsman GM, Moseley B. Superior labrum-biceps tendon complex lesions of the shoulder. Am J Sports Med. 1995;23:93–8. https://doi.org/10.1177/036354659502300116.

    Article  CAS  Google Scholar 

  22. Symanski JS, Subhas N, Babb J, Nicholson J, Gyftopoulos S. Diagnosis of superior labrum anterior-to-posterior tears by using MR imaging and MR arthrography: a systematic review and meta-analysis. Radiology. 2017;285(1):101–13. https://doi.org/10.1148/radiol.2017162681.

    Article  Google Scholar 

  23. Arirachakaran A, Boonard M, Chaijenkij K, Pituckanotai K, Prommahachai A, Kongtharvonskul J. A systematic review and meta-analysis of diagnostic test of MRA versus MRI for detection superior labrum anterior to posterior lesions type II–VII. Skelet Radiol. 2017;46(2):149–60. https://doi.org/10.1007/s00256-016-2525-1.

    Article  Google Scholar 

  24. Smith TO, Drew BT, Toms AP. A meta-analysis of the diagnostic test accuracy of MRA and MRI for the detection of glenoid labral injury. Arch Orthop Trauma Surg. 2012;132(7):905–19. https://doi.org/10.1007/s00402-012-1493-8.

    Article  Google Scholar 

  25. Gobezie R, Zurakowski D, Lavery K, Millett PJ, Cole BJ, Warner JJP. Analysis of interobserver and intraobserver variability in the diagnosis and treatment of SLAP tears using the Snyder classification. Am J Sports Med. 2008;36:1373–9. https://doi.org/10.1177/0363546508314795.

    Article  Google Scholar 

  26. Ahsan Z, Hsu JE, Gee AO. The Snyder classification of superior labrum anterior and posterior (SLAP) lesions. Clin Orthop Relat Res. 2016;474(9):2075–8. https://doi.org/10.1007/s11999-016-4826-z.

    Article  Google Scholar 

  27. Pfahler M, Haraida S, Schulz C, Anetzberger H, Refior HJ, Bauer GS, Bigliani LU. Age-related changes of the glenoid labrum in normal shoulders. J Shoulder Elb Surg. 2003;12(1):40–52. https://doi.org/10.1067/mse.2003.3.

    Article  CAS  Google Scholar 

  28. Knesek M, Skendzel JG, Dines JS, Altchek DW, Allen AA, Bedi A. Diagnosis and management of superior labral anterior posterior tears in throwing athletes. Am J Sports Med. 2013;41(2):444–60. https://doi.org/10.1177/0363546512466067.

    Article  Google Scholar 

  29. Kanatli U, Ozturk BY, Bolukbasi S. Anatomical variations of the anterosuperior labrum: prevalence and association with type II superior labrum anterior-posterior (SLAP) lesions. J Shoulder Elb Surg. 2010;19(8):1199–203. https://doi.org/10.1016/j.jse.2010.07.016.

    Article  Google Scholar 

  30. Boutin RD, Marder RA. MR imaging of SLAP lesions. Open Orthop J. 2018;12:314–23. https://doi.org/10.2174/1874325001812010314.

    Article  Google Scholar 

  31. Roy EA, Cheyne I, Andrews GT, Forster BB. Beyond the cuff: MR imaging of labroligamentous injuries in the athletic shoulder. Radiology. 2016;278(2):316–32.

    Article  Google Scholar 

  32. Budoff JE, Nirschl RP, Ilahi OA, et al. Internal impingement in the etiology of rotator cuff tendinosis revisited. Arthroscopy. 2003;19(8):810–4.

    Article  Google Scholar 

  33. Giaroli EL, Major NM, Higgins LD. MRI of internal impingement of the shoulder. Am J Roentgenol. 2005;185(4):925–9.

    Article  Google Scholar 

  34. Pasquer L, Borghol S, Meyer P, Ropars M, Dallaudiere B, Abadie P. Multimodality imaging of subacromial impingement syndrome. Skelet Radiol. 2018;47(7):923–37. https://doi.org/10.1007/s00256-018-2875-y.

    Article  Google Scholar 

  35. Bigliani LU, D’Alessandro DF, Duralde XA, et al. Anterior acromioplasty for subacromial impingement in patients younger than 40 years of age. Clin Orthop Relat Res. 1989;246:111–6.

    Article  Google Scholar 

  36. Nyffeler RW, Werner CML, Sukthankar A, Schmid MR, Gerber C. Association of a large lateral extension of the acromion with rotator cuff tears. J Bone Joint Surg Am. 2006;88(4):800–5.

    Google Scholar 

  37. Moor BK, Bouaicha S, Rothenfluh DA, Sukthankar A, Gerber C. Is there an association between the individual anatomy of the scapula and the development of rotator cuff tears or osteoarthritis of the glenohumeral joint?: a radiological study of the critical shoulder angle. Bone Joint J. 2013;95-B(7):935–41.

    Article  CAS  Google Scholar 

  38. Oh JH, Kim JY, Lee HK, et al. Classification and clinical significance of acromial spur in rotator cuff tear: heel-type spur and rotator cuff tear. Clin Orthop Relat Res. 2010;468(6):1542–50.

    Article  Google Scholar 

  39. Huang T, Liu J, Ma Y, Zhou D, Chen L, Liu F. Diagnostic accuracy of MRA and MRI for the bursal-sided partial-thickness rotator cuff tears: a meta-analysis. J Orthop Surg Res. 2019;14(1):436. https://doi.org/10.1186/s13018-019-1460-y.

    Article  Google Scholar 

  40. You T, Frostick S, Zhang W, Yin Q. OS acromiale: reviews and current perspectives. Orthop Surg. 2019;11(5):738–44. https://doi.org/10.1111/os.12518.

    Article  Google Scholar 

  41. Michener LA, McClure PW, Karduna AR. Anatomical and biomechanical mechanisms of subacromial impingement syndrome. Clin Biomech. 2003;18(5):369–79.

    Article  Google Scholar 

  42. Ellman H. Diagnosis and treatment of incomplete rotator cuff tears. Clin Orthop Relat Res. 1990;254:64.

    Article  Google Scholar 

  43. Wolff AB, Sethi P, Sutton KM, et al. Partial thickness rotator cuff tears. J Am Acad Orthop Surg. 2006;14(13):715.

    Article  Google Scholar 

  44. DeOrio JK, Cofield RH. Results of a second attempt at surgical repair of a failed initial rotator-cuff repair. J Bone Joint Surg Am. 1984;66(4):563–7.

    Article  CAS  Google Scholar 

  45. Liu F, Dong J, Shen W-J, Kang Q, Zhou D, Xiong F. Detecting rotator cuff tears: a network meta-analysis of 144 diagnostic studies. Orthop J Sports Med. 2020;8(2):2325967119900356. https://doi.org/10.1177/2325967119900356.

    Article  Google Scholar 

  46. Farooqi AS, Lee A, Novikov D, Kelley AM, Li X, Kelley JD, Parisien RL. Diagnostic accuracy of ultrasonography for rotator cuff tears: a systematic review and meta-analysis. Orthop J Sports Med. 2021;9(10):23259671211035106. https://doi.org/10.1177/23259671211035106.

    Article  Google Scholar 

  47. de Jesus JO, Parker L, Frangos AJ, Nazarian LN. Accuracy of MRI, MR arthrography, and ultrasound in the diagnosis of rotator cuff tears: a meta-analysis. AJR Am J Roentgenol. 2009;192(6):1701–7.

    Article  Google Scholar 

  48. Bureau NJ, Beauchamp M, Cardinal E, Brassard P. Dynamic sonography evaluation of shoulder impingement syndrome. AJR Am J Roentgenol. 2006;187(1):216–20. https://doi.org/10.2214/AJR.05.0528.

    Article  Google Scholar 

  49. Soker G, Gulek B, Soker E, Kaya O, Inan I, Arslan M, Esen K, Memis D, Yilmaz C. Sonographic assessment of subacromial bursa distension during arm abduction: establishing a threshold value in the diagnosis of subacromial impingement syndrome. J Med Ultrason (2001). 2018;45(2):287–94. https://doi.org/10.1007/s10396-017-0839-9.

    Article  Google Scholar 

  50. Abradou AM, Shalaby MH. Narrowed coracohumeral distance on MRI: association with subscapularis tendon tear. Egypt J Radiol Nucl Med. 2017;48(4):977–81.

    Article  Google Scholar 

  51. Freehil MQ. Coracoid impingement: diagnosis and treatment. (Review article). J Am Acad Orthop Surg. 2011;19(4):191–7.

    Article  Google Scholar 

  52. Giaroli EL, Major NM, Lemley DE, Lee J. Coracohumeral interval imaging in subcoracoid impingement syndrome on MRI. AJR Am J Roentgenol. 2006;186:242–6. https://doi.org/10.2214/AJR.04.0830.

    Article  Google Scholar 

  53. Gerber C, Terrier F, Zehnder R, Ganz R. The subcoracoid space: an anatomic study. Clin Orthop Relat Res. 1987;215:132–8.

    Article  Google Scholar 

  54. Leite MJ, Sá MC, Lopes MJ, Matos RM, Sousa AN, Torres JM. Coracohumeral distance and coracoid overlap as predictors of subscapularis and long head of the biceps injuries. J Shoulder Elb Surg. 2019;28(9):1723–7. https://doi.org/10.1016/j.jse.2019.01.012.

    Article  Google Scholar 

  55. Lappin M, Gallo A, Krzyzek M, Evans K, Chen YT. Sonographic findings in subcoracoid impingement syndrome: a case report and literature review. PM R. 2017;9(2):204–9. https://doi.org/10.1016/j.pmrj.2016.06.013.

    Article  Google Scholar 

  56. Gleason PD, Beall DP, Sanders TG, et al. The transverse humeral ligament: a separate anatomical structure or a continuation of the osseous attachment of the rotator cuff? Am J Sports Med. 2006;34(1):72–7.

    Article  Google Scholar 

  57. MacDonald K, Bridger J, Cash C, et al. Transverse humeral ligament: does it exist? Clin Anat. 2007;20(6):663–7.

    Article  CAS  Google Scholar 

  58. Habermeyer P, Magosch P, Pritsch M, Scheibel MT, Lichtenberg S. Anterosuperior impingement of the shoulder as a result of pulley lesions: a prospective arthroscopic study. J Shoulder Elb Surg. 2004;13(1):5–12.

    Article  Google Scholar 

  59. Bennett WF. Correlation of the SLAP lesion with lesions of the medial sheath of the biceps tendon and intra-articular subscapularis tendon. Indian J Orthop. 2009;43(4):342–6.

    Article  Google Scholar 

  60. Walch G, Nové-Josserand L, Boileau P, Levigne C. Subluxations and dislocations of the tendon of the long head of the biceps. J Shoulder Elb Surg. 1998;7(2):A1.

    Article  Google Scholar 

  61. Morag Y, Bedi A, Jamadar D. The rotator interval and long head biceps tendon: anatomy, function, pathology, and magnetic resonance imaging. Magn Reson Imaging Clin N Am. 2012;20(2):229–59, x.

    Article  Google Scholar 

  62. Carillon Y, Noel E, Fantino O, Perrin-Faylle O, Tran-Minh VA. Magnetic resonance imaging findings in idiopathic adhesive capsulitis of the shoulder. Rev Rhum Engl Ed. 1999;66(4):201–6.

    Google Scholar 

  63. Suh CH, Yun SJ, Jin W, et al. Systematic review and meta-analysis of magnetic resonance imaging features for diagnosis of adhesive capsulitis of the shoulder. Eur Radiol. 2019;29(2):566–77.

    Article  Google Scholar 

  64. Zappia M, Di Pietto F, Aliprandi A, Pozza S, De Petro P, Muda A, Sconfienza LM. Multi-modal imaging of adhesive capsulitis of the shoulder. Insights Imaging. 2016;7(3):365–71. https://doi.org/10.1007/s13244-016-0491-8.

    Article  Google Scholar 

  65. Mengiardi B, Pfirrmann CW, Gerber C, Hodler J, Zanetti M. Frozen shoulder: MR arthrographic findings. Radiology. 2004;233(2):486–92.

    Article  Google Scholar 

  66. Homsi C, Bordalo-Rodrigues M, da Silva JJ, Stump XM. Ultrasound in adhesive capsulitis of the shoulder: is assessment of the coracohumeral ligament a valuable diagnostic tool? Skelet Radiol. 2006;35(9):673–8.

    Article  Google Scholar 

  67. Michelin P, Delarue Y, Duparc F, Dacher JN. Thickening of the inferior glenohumeral capsule: an ultrasound sign for shoulder capsular contracture. Eur Radiol. 2013;23(10):2802–6.

    Article  Google Scholar 

  68. Lee JC, Sykes C, Saifuddin A, Connell D. Adhesive capsulitis: sonographic changes in the rotator cuff interval with arthroscopic correlation. Skelet Radiol. 2005;34(9):522–7. https://doi.org/10.1007/s00256-005-0957-0.

    Article  CAS  Google Scholar 

  69. Alyas F, Curtis M, Speed C, Saifuddin A, Connell D. MR imaging appearances of acromioclavicular joint dislocation. Radiographics. 2008;28:463–79.

    Article  Google Scholar 

  70. Zanca P. Shoulder pain: involvement of the acromioclavicular joint (analysis of 1,000 cases). Am J Roentgenol Radium Ther Nucl Med. 1971;112:493–506.

    Article  CAS  Google Scholar 

  71. Bucholz RW, Heckman JD. Chapter 29: Acromio-clavicular joint injuries. In: Bucholz RW, Heckman JD, editors. Rockwood and Green’s fractures in adults. 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2001. p. 1210–44.

    Google Scholar 

  72. Bossart PJ, Joyce SM, Manaster BJ, Packer SM. Lack of efficacy of “weighted” radiographs in diagnosing acute acromioclavicular separation. Ann Emerg Med. 1988;17:20–4.

    Article  CAS  Google Scholar 

  73. Antonio GE, Cho JH, Chung CB, Trudell DJ, Resnick D. Pictorial essay. MR imaging appearance and classification of acromioclavicular joint injury. AJR Am J Roentgenol. 2003;180:1103–10.

    Article  Google Scholar 

  74. Kassarjian A, Llopis E, Palmer WE. Distal clavicular osteolysis: MR evidence for subchondral fracture. Skelet Radiol. 2007;36(1):17–22. https://doi.org/10.1007/s00256-006-0209-y.

    Article  Google Scholar 

  75. De Abreu MR, Chung CB, Wesselly M, Jin-Kim H, Resnick D. Acromioclavicular joint osteoarthritis. Comparison of findings derived from MR imaging and conventional radiography. Clin Imaging. 2005;29:273–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nin Yuan Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pan, N.Y., Tam, G.K.F., Lui, T.H. (2023). Role of Radiological Investigations in Diagnosis of Shoulder Disorders and Surgical Planning of Arthroscopic and Endoscopic Shoulder Surgery. In: Lui, T.H. (eds) Arthroscopy and Endoscopy of the Shoulder. Springer, Singapore. https://doi.org/10.1007/978-981-19-7884-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7884-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7883-8

  • Online ISBN: 978-981-19-7884-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics