Skip to main content

Active Domain-Invariant Self-localization Using Ego-Centric and World-Centric Maps

  • Conference paper
  • First Online:
Computer Vision and Machine Intelligence

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 586))

Abstract

The training of a next-best-view (NBV) planner for visual place recognition (VPR) is a fundamentally important task in autonomous robot navigation, for which a typical approach is the use of visual experiences that are collected in the target domain as training data. However, the collection of a wide variety of visual experiences in everyday navigation is costly and prohibitive for real-time robotic applications. We address this issue by employing a novel domain-invariant NBV planner. A standard VPR subsystem based on a convolutional neural network (CNN) is assumed to be available, and its domain-invariant state recognition ability is proposed to be transferred to train the domain-invariant NBV planner. Specifically, we divide the visual cues that are available from the CNN model into two types: the output layer cue (OLC) and intermediate layer cue (ILC). The OLC is available at the output layer of the CNN model and aims to estimate the state of the robot (e.g., the robot viewpoint) with respect to the world-centric view coordinate system. The ILC is available within the middle layers of the CNN model as a high-level description of the visual content (e.g., a saliency image) with respect to the ego-centric view. In our framework, the ILC and OLC are mapped to a state vector and subsequently used to train a multiview NBV planner via deep reinforcement learning. Experiments using the public NCLT dataset validate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masone, C., Caputo, B.: A survey on deep visual place recognition. IEEE Access 9, 19516–19547 (2021)

    Google Scholar 

  2. Berton, G., Masone, C., Paolicelli, V., Caputo, B.: Viewpoint invariant dense matching for visual geolocalization. In: 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10–17, 2021, pp. 12149–12158. IEEE (2021)

    Google Scholar 

  3. Khalvati, K., Mackworth, A.K.: Active robot localization with macro actions. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2012, Vilamoura, Algarve, Portugal, October 7–12, 2012, pp. 187–193. IEEE (2012)

    Google Scholar 

  4. Huang, X., Chen, W., Zhang, W., Song, R., Cheng, J., Li, Y.: Autonomous multi-view navigation via deep reinforcement learning. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 13798–13804. IEEE (2021)

    Google Scholar 

  5. Luo, Q., Sorokin, M., Ha, S.: A few shot adaptation of visual navigation skills to new observations using meta-learning. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 13231–13237. IEEE (2021)

    Google Scholar 

  6. Kretzschmar, H., Markus, S., Christoph, S., Burgard, W.: Socially compliant mobile robot navigation via inverse reinforcement learning. Int. J. Robotics Res. 35(11), 1289–1307 (2016)

    Google Scholar 

  7. Hausler, S., Garg, S., Xu, M., Milford, M., Fischer, T.: Patch-netvlad: multi-scale fusion of locally-global descriptors for place recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19–25, 2021, pp. 14141–14152. Computer Vision Foundation/IEEE (2021)

    Google Scholar 

  8. Zhao, W., Queralta, J.P., Westerlund, T.: Sim-to-real transfer in deep reinforcement learning for robotics: a survey. In: 2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020, Canberra, Australia, December 1–4, 2020, pp. 737–744. IEEE (2020)

    Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  10. Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22–29, 2017, pp. 3449–3457. IEEE Computer Society (2017)

    Google Scholar 

  11. Burgard, W., Fox, D., Thrun, S.: Markov localization for mobile robots in dynamic environments. CoRR. abs/1106.0222 (2011)

    Google Scholar 

  12. Cormack, G.V., Clarke, C.L.A., Büttcher, S.: Reciprocal rank fusion outperforms condorcet and individual rank learning methods. In: Allan, J., Aslam, J.A., Sanderson, M., Zhai, C.X., Zobel, J. (eds.) Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2009, Boston, MA, USA, July 19–23, 2009, pp. 758–759. ACM (2009)

    Google Scholar 

  13. Chevtchenko, S.F., Ludermir, T.B.: Learning from sparse and delayed rewards with a multilayer spiking neural network. In: 2020 International Joint Conference on Neural Networks, IJCNN 2020, Glasgow, United Kingdom, July 19-24, 2020, pp. 1–8. IEEE (2020)

    Google Scholar 

  14. Lee, E.M., Choi, J., Lim, H., Myung, H.: REAL: rapid exploration with active loop-closing toward large-scale 3d mapping using UAVs. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021, Prague, Czech Republic, September 27–October 1, 2021, pp. 4194–4198. IEEE (2021)

    Google Scholar 

  15. Chaplot, D.S., Parisotto, E., Salakhutdinov, R.: Active neural localization. arXiv preprint arXiv:1801.08214 (2018)

  16. Chaplot, D.S., Gandhi, D., Gupta, S., Gupta, A., Salakhutdinov, R.: Learning to explore using active neural SLAM. In: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26–30, 2020. OpenReview.net (2020)

    Google Scholar 

  17. Schonberger, J.L., Frahm, J.-M.: Structure-from-motion revisited. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4104–4113 (2016)

    Google Scholar 

  18. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). MIT Press (2005)

    Google Scholar 

  19. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M.A., Fidjeland, A., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  20. Carlevaris-Bianco, N., Ushani, A.K., Eustice, R.M.: University of Michigan north campus long-term vision and lidar dataset. Int. J. Robot. Res. 35(9), 1023–1035 (2016)

    Article  Google Scholar 

  21. Liu, L., Özsu, M. T.: Encyclopedia of database systems 6, Springer, (2009)

    Google Scholar 

  22. Kanya, K., Kanji, T.: Deep next-best-view planner for cross-season visual route classification. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 497–502. IEEE (2021)

    Google Scholar 

  23. Mourão, A., Martins, F., Magalhaes, J.: Multimodal medical information retrieval with unsupervised rank fusion. Comput. Med. Imaging Graph. 39, 35–45 (2015). https://doi.org/10.1016/j.compmedimag.2014.05.006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanji Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kurauchi, K., Tanaka, K., Yamamoto, R., Yoshida, M. (2023). Active Domain-Invariant Self-localization Using Ego-Centric and World-Centric Maps. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_38

Download citation

Publish with us

Policies and ethics