Skip to main content

Low-Cost Hardware-Accelerated Vision-Based Depth Perception for Real-Time Applications

  • Conference paper
  • First Online:
Computer Vision and Machine Intelligence

Abstract

Depth estimation and 3D object detection are critical for autonomous systems to gain context of their surroundings. In recent times, compute capacity has improved tremendously, enabling computer vision and AI on the edge. In this paper, we harness the power of CUDA and OpenMP to accelerate ELAS (a stereoscopic vision-based disparity calculation algorithm) and 3D projection of the estimated depth while performing object detection and tracking. We also examine the utility of Bayesian inference in achieving real-time object tracking. Finally, we build a drive-by-wire car equipped with a stereo camera setup to test our system in the real world. The entire system has been made public and easily accessible through a Python module.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aleotti, F., Tosi, F., Poggi, M., Mattoccia, S.: Generative adversarial networks for unsupervised monocular depth prediction. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops, p. 0 (2018)

    Google Scholar 

  2. OpenMP Architecture Review Board: OpenMP application program interface version 3.0 (Nov 2015), https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

  3. Vingelmann, P., Fitzek, F.H.: Cuda, release: 10.2.89. NVIDIA (2020), https://developer.nvidia.com/cuda-toolkit

  4. Group, K.: The OpenGL® graphics system: A specification. https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf (Oct 2019)

  5. Wang, Y., Chao, W.L., Garg, D., Hariharan, B., Campbell, M., Weinberger, K.Q.: Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8445–8453 (2019)

    Google Scholar 

  6. Garg, R., Bg, V.K., Carneiro, G., Reid, I.: Unsupervised CNN for single view depth estimation: Geometry to the rescue. In: European conference on computer vision, pp. 740–756. Springer, Berlin (2016)

    Google Scholar 

  7. Chakravarty, P., Narayanan, P., Roussel, T.: Gen-slam: Generative modeling for monocular simultaneous localization and mapping. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 147–153. IEEE (2019)

    Google Scholar 

  8. Wang, R., Pizer, S.M., Frahm, J.M.: Recurrent neural network for (un-) supervised learning of monocular video visual odometry and depth. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5555–5564 (2019)

    Google Scholar 

  9. Aleotti, F., Tosi, F., Poggi, M., Mattoccia, S.: Generative adversarial networks for unsupervised monocular depth prediction. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops, p. 0 (2018)

    Google Scholar 

  10. Zhao, C., Sun, Q., Zhang, C., Tang, Y., Qian, F.: Monocular depth estimation based on deep learning: an overview. Sci. China Technol. Sci. 1–16 (2020)

    Google Scholar 

  11. Cheng, X., Zhong, Y., Harandi, M., Dai, Y., Chang, X., Li, H., Drummond, T., Ge, Z.: Hierarchical neural architecture search for deep stereo matching. Adv. Neural Inf. Proc. Syst. 33 (2020)

    Google Scholar 

  12. Liu, B., Yu, H., Long, Y.: Local similarity pattern and cost self-reassembling for deep stereo matching networks (2021). 10.48550/ARXIV.2112.01011, https://arxiv.org/abs/2112.01011

  13. Mao, Y., Liu, Z., Li, W., Dai, Y., Wang, Q., Kim, Y.T., Lee, H.S.: Uasnet: Uncertainty adaptive sampling network for deep stereo matching. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6291–6299 (2021). 10.1109/ICCV48922.2021.00625

    Google Scholar 

  14. Wu, Z., Wu, X., Zhang, X., Wang, S., Ju, L.: Semantic stereo matching with pyramid cost volumes. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 7483–7492 (2019). 10.1109/ICCV.2019.00758

    Google Scholar 

  15. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  16. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The kitti dataset. Int. J. Rob. Res. 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  17. Shah, S., Dey, D., Lovett, C., Kapoor, A.: Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In: Field and service robotics. pp. 621–635. Springer, Berlin (2018)

    Google Scholar 

  18. The Mathworks, Inc., Natick, Massachusetts: MATLAB version 9.11.0.1837725 (R2021b) (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Aditya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aditya, N.G., Dhruval, P.B., Shylaja, S.S., Katharguppe, S. (2023). Low-Cost Hardware-Accelerated Vision-Based Depth Perception for Real-Time Applications. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_22

Download citation

Publish with us

Policies and ethics