Skip to main content

Analysis of Technologies for Visual Tracking of Physiological Condition of Cattle

  • Conference paper
  • First Online:
Agriculture Digitalization and Organic Production

Abstract

At the moment, devices for monitoring the physiological condition of the animal are beginning to play an increasingly important role. These devices and systems allow for operational control and monitoring of the animal 24 h a day, 7 days a week, which allows specialists and engineers to make effective decisions on cattle management. The purpose of the paper: the development of models, analysis of methods and systems that allow predicting and assessing the physical condition of animals, detecting, and preventing diseases in cattle in real time. As a result of our analysis, we identified 25 promising studies and technologies that tested the accuracy and conditions for improving the accuracy of various monitoring devices for dairy herd animals to measure the duration and number of activities under different conditions, with different frequency, sampling intervals and editing criteria. This paper provides an overview of other popular studies conducted on cattle. The authors define the current state, problems, and possible ways of further development of dairy cattle health monitoring and herd management technologies based on visual feature recognition using artificial neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reith, S., Brandt, H., Hoy, S.: Simultaneous analysis of activity and rumination time, based on collar-mounted sensor technology, of dairy cows over the periestrus period. Livest. Sci. 170, 219–227 (2019). https://doi.org/10.1016/j.livsci.2014.10.013

    Article  Google Scholar 

  2. Zenher, N., Hurlimann, M., Nydegger, F., Schick, M.: Application of a chewing sensor (RumiWatch) for automatic heat detection in dairy cows: a pilot study. In: International Conference of Agricultural Engineering (2014)

    Google Scholar 

  3. Xia, T., Song, C., Li, J., Cao, N., Li, C., Xu, G., Zhou, Q.: Research and application of cow estrus detection based on the internet of things. In: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), vol. 1, pp. 665–667 (2017)

    Google Scholar 

  4. Tani, Y., Yokota, Y., Yayota, M., Ohtani, S.: Automatic recognition and classification of cattle chewing activity by an acoustic monitoring method with a single-axis acceleration sensor. Comput. Electron. Agric. 92, 54–65 (2013)

    Article  Google Scholar 

  5. Humer, E., Ghareeb, K., Harder, H., Mickdam, E., Khol-Parisini, A., Zebeli, Q.: Peripartal changes in reticuloruminal pH and temperature in dairy cows differing in the susceptibility to subacute rumen acidosis. J. Dairy Sci. 98(12), 8788–8799 (2015). https://doi.org/10.3168/jds.2015-9522

    Article  Google Scholar 

  6. Lange, K., Fischer-Tenhagen, C., Heuwieser, W.: Predicting stage 2 of calving in Holstein-Friesian heifers. J. Dairy Sci. 100(6), 4847–4856 (2017). https://doi.org/10.3168/jds.2016-12024

    Article  Google Scholar 

  7. Yukun, S., Pengju, H., Yujie, W., Ziqi, C., Yang, L., Baisheng, D., Yonggen, Z.: Automatic monitoring system for individual dairy cows based on a deep learning framework that provides identification via body parts and estimation of body condition score. J. Dairy Sci. 102(11), 10140–10151 (2019). https://doi.org/10.3168/jds.2018-16164

    Article  Google Scholar 

  8. Cangar, Ö., Leroy, T., Guarino, M., Vranken, E., Fallon, R., Lenehan, J., Berckmans, D.: Automatic real-time monitoring of locomotion and posture behaviour of pregnant cows prior to calving using online image analysis. Comput. Electron. Agric. 64(1), 53–60 (2008). https://doi.org/10.1016/j.compag.2008.05.014

    Article  Google Scholar 

  9. Nguyen, H., Maclagan, S.J., Nguyen, T.D., Nguyen, T., Flemons, P., Andrews, K., Phung, D.: Animal recognition and identification with deep convolutional neural networks for automated wildlife monitoring. In: 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 40–49 (2017)

    Google Scholar 

  10. Hendriks, S.J., Phyn, C.V.C., Huzzey, J.M., Mueller, K.R., Turner, S.A., Donaghy, D.J., Roche, J.R.: Graduate student literature review: evaluating the appropriate use of wearable accelerometers in research to monitor lying behaviors of dairy cows. J. Dairy Sci. 103(12), 12140–12157 (2020). https://doi.org/10.3168/jds.2019-17887

    Article  Google Scholar 

  11. MacKay, J.R., Deag, J.M., Haskell, M.J.: Establishing the extent of behavioural reactions in dairy cattle to a leg mounted activity monitor. Appl. Anim. Behav. Sci. 139(1–2), 35–41 (2012). https://doi.org/10.1016/j.applanim.2012.03.008

    Article  Google Scholar 

  12. Porto, S.M., Arcidiacono, C., Anguzza, U., Cascone, G.: The automatic detection of dairy cow feeding and standing behaviours in free-stall barns by a computer vision-based system. Biosys. Eng. 133, 46–55 (2015). https://doi.org/10.1016/j.biosystemseng.2015.02.012

    Article  Google Scholar 

  13. Måløy, H., Aamodt, A., Misimi, E.: A spatio-temporal recurrent network for salmon feeding action recognition from underwater videos in aquaculture. Comput. Electron. Agric. 167, 105087 (2019). https://doi.org/10.1016/j.compag.2019.105087

    Article  Google Scholar 

  14. Yin, L., Liu, C., Hong, T., Zhou, H., Kae Hsiang, K.: Design of system for monitoring dairy cattle’s behavioral features based on wireless sensor networks. Trans. Chin. Soc. Agric. Eng. 26(3), 203–208 (2010). https://doi.org/10.3969/j.issn.1002-6819.2010.03.034

    Article  Google Scholar 

  15. Xu, Y., Zhou, X., Chen, S., Li, F.: Deep learning for multiple object tracking: a survey. IET Comput. Vis. 13(4), 355–368 (2019)

    Article  Google Scholar 

  16. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1725–1733 (2014). http://doi.org/10.1109/CVPR.2014.223

  17. Tan, M.X., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114 (2019). http://arxiv.org/abs/1905.11946

  18. Yin, X., Wu, D., Shang, Y., Jiang, B., Song, H.: Using an EfficientNet-LSTM for the recognition of single cow’s motion behaviours in a complicated environment. Comput. Electron. Agric. 177, 105707 (2020). https://doi.org/10.1016/j.compag.2020.105707

    Article  Google Scholar 

  19. Zhang, H., Wang, R., Dong, P., Sun, H., Li, S., Wang, H.: Beef cattle multi-target tracking based on DeepSORT algorithm. J. Agric. Mech. 54(4), 248–256 (2021). https://doi.org/10.6041/j.issn.1000-1298.2021.04.026

    Article  Google Scholar 

  20. Gong, X., Le, Z., Wu, Y., Wang, H.: Real-time multiobject tracking based on multiway concurrency. Sensors 21(3), 685 (2021). https://doi.org/10.3390/s21030685

    Article  Google Scholar 

  21. Wu, H., Du, C., Ji, Z., Gao, M., He, Z.: SORT-YM: an algorithm of multi-object tracking with YOLOv4-tiny and motion prediction. Electronics 10(18), 2319 (2021). https://doi.org/10.3390/electronics10182319

    Article  Google Scholar 

  22. Elischer, M.F., Arceo, M.E., Karcher, E.L., Siegford, J.M.: Validating the accuracy of activity and rumination monitor data from dairy cows housed in a pasture-based automatic milking system. J. Dairy Sci. 96(10), 6412–6422 (2013). https://doi.org/10.3168/jds.2013-6790

    Article  Google Scholar 

  23. Bikker, J.P., Van Laar, H., Rump, P., Doorenbos, J., Van Meurs, K., Griffioen, G.M., Dijkstra, J.: Evaluation of an ear-attached movement sensor to record cow feeding behavior and activity. J. Dairy Sci. 97(5), 2974–2979 (2014). https://doi.org/10.3168/jds.2013-7560

    Article  Google Scholar 

  24. Borchers, M.R., Chang, Y.M., Tsai, I.C., Wadsworth, B.A., Bewley, J.M.: A validation of technologies monitoring dairy cow feeding, ruminating, and lying behaviors. J. Dairy Sci. 99(9), 7458–7466 (2016). https://doi.org/10.3168/jds.2015-10843

    Article  Google Scholar 

  25. Mattachini, G., Riva, E., Bisaglia, C., Pompe, J.C.A.M., Provolo, G.: Methodology for quantifying the behavioral activity of dairy cows in freestall barns. J. Anim. Sci. 91(10), 4899–4907 (2013). https://doi.org/10.2527/jas2012-5554

    Article  Google Scholar 

  26. Tamura, T., Okubo, Y., Deguchi, Y., Koshikawa, S., Takahashi, M., Chida, Y., Okada, K.: Dairy cattle behavior classifications based on decision tree learning using 3-axis neck-mounted accelerometers. Anim. Sci. J. 90(4), 589–596 (2019). https://doi.org/10.1111/asj.13184

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by state research № FFZF-2022-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Avksentieva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trezubov, K., Avksentieva, E., Luzhnyak, V., Shulgin, I. (2023). Analysis of Technologies for Visual Tracking of Physiological Condition of Cattle. In: Ronzhin, A., Kostyaev, A. (eds) Agriculture Digitalization and Organic Production . Smart Innovation, Systems and Technologies, vol 331. Springer, Singapore. https://doi.org/10.1007/978-981-19-7780-0_23

Download citation

Publish with us

Policies and ethics