Skip to main content

A High Efficiency Isolated Bidirectional Reduced-Switch DC-DC Converter for Electric Vehicle Applications

  • Conference paper
  • First Online:
Recent Advances in Power Electronics and Drives

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 973))

Abstract

In this paper, a new topology for an isolated DC-DC converter that can be used for electric vehicle applications is presented in a dual bridge structure, having just one switch, two capacitors, and an inductor each in the front-end and back-end H-bridges, along with a high-frequency transformer (HFT) for isolation of the bridges. Simulations were done in MATLAB/Simulink to verify the structure and working of the converter. The converter showed very high efficiency of more than 98% in isolation mode, buck mode, and boost mode operations, with very low voltage and current ripple values of less than 5%. Finally, a comparison study with a recent similar half bridge converter topology is also done to discuss the benefits of the proposed topology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Inoue, M. Ishigaki, A. Takahashi, T. Sugiyama, Design of an isolated bidirectional DC-DC converter with built-in filters for high power density. IEEE Trans. Power Electron. 36(1), 739–750 (2021). https://doi.org/10.1109/TPEL.2020.3003618

    Article  Google Scholar 

  2. O. Alkul, S. Demirbas, A novel high frequency-link bidirectional DC-DC converter for electric vehicle applications, in 2nd International Conference on Smart Grid Renewable Energy, SGRE 2019—Proceedings (2019). https://doi.org/10.1109/SGRE46976.2019.9020693.

  3. Z. Zhang, C. Liu, M. Wang, Y. Si, Y. Liu, Q. Lei, High-efficiency high-power-density CLLC resonant converter with low-stray-capacitance and well-heat-dissipated planar transformer for EV on-board charger. IEEE Trans. Power Electron. 35(10), 10831–10851 (2020). https://doi.org/10.1109/TPEL.2020.2980313

    Article  Google Scholar 

  4. X. Qi, Y. Wang, M. Fang, An integrated cascade structure-based isolated bidirectional DC–DC converter for battery charge equalization. IEEE Trans. Power Electron. 35(11), 12003–12021 (2020)

    Article  Google Scholar 

  5. Int. Energy Agency, Energy Technology Perspectives (Paris, Fr., 2017)

    Google Scholar 

  6. S.H. Hosseini, R. Ghazi, H. Heydari-Doostabad, An extendable quadratic bidirectional DC–DC converter for V2G and G2V applications. IEEE Trans. Ind. Electron. 68(6), 4859–4869 (2020)

    Article  Google Scholar 

  7. Y. Liao et al., Single-stage DAB-LLC hybrid bidirectional converter with tight voltage regulation under DCX operation. IEEE Trans. Ind. Electron. 68(1), 293–303 (2020)

    Article  Google Scholar 

  8. P. He, A. Khaligh, Comprehensive analyses and comparison of 1 kW isolated DC–DC converters for bidirectional EV charging systems. IEEE Trans. Transp. Electrif. 3(1), 147–156 (2016)

    Article  Google Scholar 

  9. A. Parisi, E. Ragonese, N. Spina, G. Palmisano, Galvanically isolated DC-DC converter using a single isolation transformer for multi-channel communication. IEEE Trans. Circuits Syst. I Regul. Pap. 67(12), 4434–4444 (2020). https://doi.org/10.1109/TCSI.2020.3007314

    Article  Google Scholar 

  10. Z.S. Du, P. Channegowda, P. Kshirsagar, S. Dwari, High density high power DC-DC converter architectures for future electric transportation applications. in 2019 IEEE Energy Conversion Congress and Exposition, ECCE 2019 (2019), pp. 5862–5869. https://doi.org/10.1109/ECCE.2019.8913313

  11. P. He, A. Khaligh, Comprehensive analyses and comparison of 1 kW isolated DC-DC converters for bidirectional EV charging systems. IEEE Trans. Transp. Electrif. 3(1), 147–156 (2017). https://doi.org/10.1109/TTE.2016.2630927

    Article  Google Scholar 

  12. Z. Liao, Y. Lei, R.C.N. Pilawa-Podgurski, Analysis and design of a high power density flying-capacitor multilevel boost converter for high step-up conversion. IEEE Trans. Power Electron. 34(5), 4087–4099 (2019). https://doi.org/10.1109/TPEL.2018.2858184

    Article  Google Scholar 

  13. J. Scoltock, Y. Wang, G. Calderon-Lopez, A.J. Forsyth, Rapid thermal analysis of nanocrystalline inductors for converter optimization. IEEE J. Emerg. Sel. Top. Power Electron. 8(3), 2276–2284 (2020). https://doi.org/10.1109/JESTPE.2019.2947223

    Article  Google Scholar 

  14. S. Lu, C. Ding, Y. Mei, K.D.T. Ngo, G.Q. Lu, Hetero-magnetic coupled inductor (HMCI) for high frequency interleaved multiphase DC/DC converters, in IEEE Conference on Applied Power Electronics Conference and Exposition-APEC, vol. 2019 (2019), pp. 2667–2672. https://doi.org/10.1109/APEC.2019.8721767.

  15. R. Mayer, M.B. El Kattel, S.V.G. Oliveira, Multiphase interleaved bidirectional DC/DC converter with coupled inductor for electrified-vehicle applications. IEEE Trans. Power Electron. 36(3), 2533–2547 (2020)

    Article  Google Scholar 

  16. Y.C. Liu et al., Design and implementation of a planar transformer with fractional turns for high power density LLC resonant converters. IEEE Trans. Power Electron. 36(5), 5191–5203 (2021). https://doi.org/10.1109/TPEL.2020.3029001

    Article  Google Scholar 

  17. S. Gao, Y. Wang, Y. Guan, D. Xu, A high step up SEPIC-based converter based on partly interleaved transformer. IEEE Trans. Ind. Electron. 67(2), 1455–1465 (2020). https://doi.org/10.1109/TIE.2019.2910044

    Article  Google Scholar 

  18. S. Neira, J. Pereda, F. Rojas, Three-port full-bridge bidirectional converter for hybrid dc/dc/ac systems. IEEE Trans. Power Electron. 35(12), 13077–13084 (2020)

    Article  Google Scholar 

  19. X. Xu, Y. Zhang, L. Zhu, H. Yu, Y. Zhang, H. Wu, A high step-down DC-DC converter with matrix-transformer and wide voltage gain for vehicle power supply applications. 2019 22nd Int Conf. Electr. Mach. Syst. ICEMS 2019, 1–6 (2019). https://doi.org/10.1109/ICEMS.2019.8922407

    Article  Google Scholar 

  20. B. Vardani, N.R. Tummuru, Bidirectional wireless power transfer using single phase matrix converter for electric vehicle application, in IEEE Region 10 Annual International Conference, Proceedings/TENCON, vol. 2019 (2019), pp. 1523–1528. https://doi.org/10.1109/TENCON.2019.8929288.

  21. C. Fei, F.C. Lee, Q. Li, High-efficiency high-power-density LLC converter with an integrated planar matrix transformer for high-output current applications. IEEE Trans. Ind. Electron. 64(11), 9072–9082 (2017). https://doi.org/10.1109/TIE.2017.2674599

    Article  Google Scholar 

  22. A. Parida, M. Barai, K.R. Mothukuri, Study of a soft switched isolated DC-DC bidirectional converter for electric vehicles, in TENCON 2019–2019 IEEE Region 10 Conference (TENCON) (2019), pp. 1136–1141

    Google Scholar 

  23. F.Z. Peng, H. Li, G.J. Su, J.S. Lawler, A new ZVS bidirectional DC-DC converter for fuel cell and battery application. IEEE Trans. Power Electron. 19(1), 54–65 (2004). https://doi.org/10.1109/TPEL.2003.820550

    Article  Google Scholar 

  24. J. Liu, Y. Mei, S. Lu, X. Li, G.Q. Lu, Continuously variable multi-permeability inductor for improving the efficiency of high-frequency DC-DC converter. IEEE Trans. Power Electron. 35(1), 826–834 (2020). https://doi.org/10.1109/TPEL.2019.2907770

    Article  Google Scholar 

  25. Jason, Application report input and output capacitor selection. Cycle (February), 1–11 (2006) [Online]. www.ti.com.

  26. W. Hart Danial, Commonly Used Power and Converter Equations (2010)

    Google Scholar 

  27. H. Ramakrishnan, Design Guide: TIDA-010054 Bi-Directional, Dual Active Bridge Reference Design for Level 3 Electric Vehicle Charging Stations (Texas Instruments Incorporated, 2019)

    Google Scholar 

Download references

Acknowledgements

This work is part of SRMIST Selective Excellence Research Initiative-2021: ‘DCFCEVB’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Femi Robert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Venugopal, A., Robert, F. (2023). A High Efficiency Isolated Bidirectional Reduced-Switch DC-DC Converter for Electric Vehicle Applications. In: Kumar, S., Singh, B., Sood, V.K. (eds) Recent Advances in Power Electronics and Drives. Lecture Notes in Electrical Engineering, vol 973. Springer, Singapore. https://doi.org/10.1007/978-981-19-7728-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7728-2_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7727-5

  • Online ISBN: 978-981-19-7728-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics